| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspindpi.v |
|- V = ( Base ` W ) |
| 2 |
|
lspindpi.n |
|- N = ( LSpan ` W ) |
| 3 |
|
lspindpi.w |
|- ( ph -> W e. LVec ) |
| 4 |
|
lspindpi.x |
|- ( ph -> X e. V ) |
| 5 |
|
lspindpi.y |
|- ( ph -> Y e. V ) |
| 6 |
|
lspindpi.z |
|- ( ph -> Z e. V ) |
| 7 |
|
lspindpi.e |
|- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
| 8 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 9 |
3 8
|
syl |
|- ( ph -> W e. LMod ) |
| 10 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 11 |
10
|
lsssssubg |
|- ( W e. LMod -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
| 12 |
9 11
|
syl |
|- ( ph -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
| 13 |
1 10 2
|
lspsncl |
|- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 14 |
9 5 13
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 15 |
12 14
|
sseldd |
|- ( ph -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
| 16 |
1 10 2
|
lspsncl |
|- ( ( W e. LMod /\ Z e. V ) -> ( N ` { Z } ) e. ( LSubSp ` W ) ) |
| 17 |
9 6 16
|
syl2anc |
|- ( ph -> ( N ` { Z } ) e. ( LSubSp ` W ) ) |
| 18 |
12 17
|
sseldd |
|- ( ph -> ( N ` { Z } ) e. ( SubGrp ` W ) ) |
| 19 |
|
eqid |
|- ( LSSum ` W ) = ( LSSum ` W ) |
| 20 |
19
|
lsmub1 |
|- ( ( ( N ` { Y } ) e. ( SubGrp ` W ) /\ ( N ` { Z } ) e. ( SubGrp ` W ) ) -> ( N ` { Y } ) C_ ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Z } ) ) ) |
| 21 |
15 18 20
|
syl2anc |
|- ( ph -> ( N ` { Y } ) C_ ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Z } ) ) ) |
| 22 |
1 2 19 9 5 6
|
lsmpr |
|- ( ph -> ( N ` { Y , Z } ) = ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Z } ) ) ) |
| 23 |
21 22
|
sseqtrrd |
|- ( ph -> ( N ` { Y } ) C_ ( N ` { Y , Z } ) ) |
| 24 |
|
sseq1 |
|- ( ( N ` { X } ) = ( N ` { Y } ) -> ( ( N ` { X } ) C_ ( N ` { Y , Z } ) <-> ( N ` { Y } ) C_ ( N ` { Y , Z } ) ) ) |
| 25 |
23 24
|
syl5ibrcom |
|- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) -> ( N ` { X } ) C_ ( N ` { Y , Z } ) ) ) |
| 26 |
1 10 2 9 5 6
|
lspprcl |
|- ( ph -> ( N ` { Y , Z } ) e. ( LSubSp ` W ) ) |
| 27 |
1 10 2 9 26 4
|
ellspsn5b |
|- ( ph -> ( X e. ( N ` { Y , Z } ) <-> ( N ` { X } ) C_ ( N ` { Y , Z } ) ) ) |
| 28 |
25 27
|
sylibrd |
|- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) -> X e. ( N ` { Y , Z } ) ) ) |
| 29 |
28
|
necon3bd |
|- ( ph -> ( -. X e. ( N ` { Y , Z } ) -> ( N ` { X } ) =/= ( N ` { Y } ) ) ) |
| 30 |
7 29
|
mpd |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 31 |
19
|
lsmub2 |
|- ( ( ( N ` { Y } ) e. ( SubGrp ` W ) /\ ( N ` { Z } ) e. ( SubGrp ` W ) ) -> ( N ` { Z } ) C_ ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Z } ) ) ) |
| 32 |
15 18 31
|
syl2anc |
|- ( ph -> ( N ` { Z } ) C_ ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Z } ) ) ) |
| 33 |
32 22
|
sseqtrrd |
|- ( ph -> ( N ` { Z } ) C_ ( N ` { Y , Z } ) ) |
| 34 |
|
sseq1 |
|- ( ( N ` { X } ) = ( N ` { Z } ) -> ( ( N ` { X } ) C_ ( N ` { Y , Z } ) <-> ( N ` { Z } ) C_ ( N ` { Y , Z } ) ) ) |
| 35 |
33 34
|
syl5ibrcom |
|- ( ph -> ( ( N ` { X } ) = ( N ` { Z } ) -> ( N ` { X } ) C_ ( N ` { Y , Z } ) ) ) |
| 36 |
35 27
|
sylibrd |
|- ( ph -> ( ( N ` { X } ) = ( N ` { Z } ) -> X e. ( N ` { Y , Z } ) ) ) |
| 37 |
36
|
necon3bd |
|- ( ph -> ( -. X e. ( N ` { Y , Z } ) -> ( N ` { X } ) =/= ( N ` { Z } ) ) ) |
| 38 |
7 37
|
mpd |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) ) |
| 39 |
30 38
|
jca |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ ( N ` { X } ) =/= ( N ` { Z } ) ) ) |