| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsppr0.v |
|- V = ( Base ` W ) |
| 2 |
|
lsppr0.z |
|- .0. = ( 0g ` W ) |
| 3 |
|
lsppr0.n |
|- N = ( LSpan ` W ) |
| 4 |
|
lsppr0.w |
|- ( ph -> W e. LMod ) |
| 5 |
|
lsppr0.x |
|- ( ph -> X e. V ) |
| 6 |
|
eqid |
|- ( LSSum ` W ) = ( LSSum ` W ) |
| 7 |
1 2
|
lmod0vcl |
|- ( W e. LMod -> .0. e. V ) |
| 8 |
4 7
|
syl |
|- ( ph -> .0. e. V ) |
| 9 |
1 3 6 4 5 8
|
lsmpr |
|- ( ph -> ( N ` { X , .0. } ) = ( ( N ` { X } ) ( LSSum ` W ) ( N ` { .0. } ) ) ) |
| 10 |
2 3
|
lspsn0 |
|- ( W e. LMod -> ( N ` { .0. } ) = { .0. } ) |
| 11 |
4 10
|
syl |
|- ( ph -> ( N ` { .0. } ) = { .0. } ) |
| 12 |
11
|
oveq2d |
|- ( ph -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { .0. } ) ) = ( ( N ` { X } ) ( LSSum ` W ) { .0. } ) ) |
| 13 |
1 3
|
lspsnsubg |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
| 14 |
4 5 13
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
| 15 |
2 6
|
lsm01 |
|- ( ( N ` { X } ) e. ( SubGrp ` W ) -> ( ( N ` { X } ) ( LSSum ` W ) { .0. } ) = ( N ` { X } ) ) |
| 16 |
14 15
|
syl |
|- ( ph -> ( ( N ` { X } ) ( LSSum ` W ) { .0. } ) = ( N ` { X } ) ) |
| 17 |
9 12 16
|
3eqtrd |
|- ( ph -> ( N ` { X , .0. } ) = ( N ` { X } ) ) |