| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsppreli.v |
|- V = ( Base ` W ) |
| 2 |
|
lsppreli.p |
|- .+ = ( +g ` W ) |
| 3 |
|
lsppreli.t |
|- .x. = ( .s ` W ) |
| 4 |
|
lsppreli.f |
|- F = ( Scalar ` W ) |
| 5 |
|
lsppreli.k |
|- K = ( Base ` F ) |
| 6 |
|
lsppreli.n |
|- N = ( LSpan ` W ) |
| 7 |
|
lsppreli.w |
|- ( ph -> W e. LMod ) |
| 8 |
|
lsppreli.a |
|- ( ph -> A e. K ) |
| 9 |
|
lsppreli.b |
|- ( ph -> B e. K ) |
| 10 |
|
lsppreli.x |
|- ( ph -> X e. V ) |
| 11 |
|
lsppreli.y |
|- ( ph -> Y e. V ) |
| 12 |
1 6
|
lspsnsubg |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
| 13 |
7 10 12
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
| 14 |
1 6
|
lspsnsubg |
|- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
| 15 |
7 11 14
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
| 16 |
1 3 4 5 6 7 8 10
|
ellspsni |
|- ( ph -> ( A .x. X ) e. ( N ` { X } ) ) |
| 17 |
1 3 4 5 6 7 9 11
|
ellspsni |
|- ( ph -> ( B .x. Y ) e. ( N ` { Y } ) ) |
| 18 |
|
eqid |
|- ( LSSum ` W ) = ( LSSum ` W ) |
| 19 |
2 18
|
lsmelvali |
|- ( ( ( ( N ` { X } ) e. ( SubGrp ` W ) /\ ( N ` { Y } ) e. ( SubGrp ` W ) ) /\ ( ( A .x. X ) e. ( N ` { X } ) /\ ( B .x. Y ) e. ( N ` { Y } ) ) ) -> ( ( A .x. X ) .+ ( B .x. Y ) ) e. ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
| 20 |
13 15 16 17 19
|
syl22anc |
|- ( ph -> ( ( A .x. X ) .+ ( B .x. Y ) ) e. ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
| 21 |
1 6 18 7 10 11
|
lsmpr |
|- ( ph -> ( N ` { X , Y } ) = ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
| 22 |
20 21
|
eleqtrrd |
|- ( ph -> ( ( A .x. X ) .+ ( B .x. Y ) ) e. ( N ` { X , Y } ) ) |