Step |
Hyp |
Ref |
Expression |
1 |
|
lspprid.v |
|- V = ( Base ` W ) |
2 |
|
lspprid.n |
|- N = ( LSpan ` W ) |
3 |
|
lspprid.w |
|- ( ph -> W e. LMod ) |
4 |
|
lspprid.x |
|- ( ph -> X e. V ) |
5 |
|
lspprid.y |
|- ( ph -> Y e. V ) |
6 |
4 5
|
prssd |
|- ( ph -> { X , Y } C_ V ) |
7 |
|
snsspr1 |
|- { X } C_ { X , Y } |
8 |
7
|
a1i |
|- ( ph -> { X } C_ { X , Y } ) |
9 |
1 2
|
lspss |
|- ( ( W e. LMod /\ { X , Y } C_ V /\ { X } C_ { X , Y } ) -> ( N ` { X } ) C_ ( N ` { X , Y } ) ) |
10 |
3 6 8 9
|
syl3anc |
|- ( ph -> ( N ` { X } ) C_ ( N ` { X , Y } ) ) |
11 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
12 |
1 11 2 3 4 5
|
lspprcl |
|- ( ph -> ( N ` { X , Y } ) e. ( LSubSp ` W ) ) |
13 |
1 11 2 3 12 4
|
lspsnel5 |
|- ( ph -> ( X e. ( N ` { X , Y } ) <-> ( N ` { X } ) C_ ( N ` { X , Y } ) ) ) |
14 |
10 13
|
mpbird |
|- ( ph -> X e. ( N ` { X , Y } ) ) |