Description: A member of a pair of vectors belongs to their span. (Contributed by NM, 14-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprid.v | |- V = ( Base ` W ) | |
| lspprid.n | |- N = ( LSpan ` W ) | ||
| lspprid.w | |- ( ph -> W e. LMod ) | ||
| lspprid.x | |- ( ph -> X e. V ) | ||
| lspprid.y | |- ( ph -> Y e. V ) | ||
| Assertion | lspprid2 | |- ( ph -> Y e. ( N ` { X , Y } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lspprid.v | |- V = ( Base ` W ) | |
| 2 | lspprid.n | |- N = ( LSpan ` W ) | |
| 3 | lspprid.w | |- ( ph -> W e. LMod ) | |
| 4 | lspprid.x | |- ( ph -> X e. V ) | |
| 5 | lspprid.y | |- ( ph -> Y e. V ) | |
| 6 | 1 2 3 5 4 | lspprid1 |  |-  ( ph -> Y e. ( N ` { Y , X } ) ) | 
| 7 | prcom |  |-  { Y , X } = { X , Y } | |
| 8 | 7 | fveq2i |  |-  ( N ` { Y , X } ) = ( N ` { X , Y } ) | 
| 9 | 6 8 | eleqtrdi |  |-  ( ph -> Y e. ( N ` { X , Y } ) ) |