Description: The span of a pair of vectors in a subspace belongs to the subspace. (Contributed by NM, 12-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprss.s | |- S = ( LSubSp ` W ) | |
| lspprss.n | |- N = ( LSpan ` W ) | ||
| lspprss.w | |- ( ph -> W e. LMod ) | ||
| lspprss.u | |- ( ph -> U e. S ) | ||
| lspprss.x | |- ( ph -> X e. U ) | ||
| lspprss.y | |- ( ph -> Y e. U ) | ||
| Assertion | lspprss | |- ( ph -> ( N ` { X , Y } ) C_ U ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lspprss.s | |- S = ( LSubSp ` W ) | |
| 2 | lspprss.n | |- N = ( LSpan ` W ) | |
| 3 | lspprss.w | |- ( ph -> W e. LMod ) | |
| 4 | lspprss.u | |- ( ph -> U e. S ) | |
| 5 | lspprss.x | |- ( ph -> X e. U ) | |
| 6 | lspprss.y | |- ( ph -> Y e. U ) | |
| 7 | 5 6 | prssd |  |-  ( ph -> { X , Y } C_ U ) | 
| 8 | 1 2 | lspssp |  |-  ( ( W e. LMod /\ U e. S /\ { X , Y } C_ U ) -> ( N ` { X , Y } ) C_ U ) | 
| 9 | 3 4 7 8 | syl3anc |  |-  ( ph -> ( N ` { X , Y } ) C_ U ) |