Description: The sum of two vectors belongs to their span. (Contributed by NM, 20-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprvacl.v | |- V = ( Base ` W ) | |
| lspprvacl.p | |- .+ = ( +g ` W ) | ||
| lspprvacl.n | |- N = ( LSpan ` W ) | ||
| lspprvacl.w | |- ( ph -> W e. LMod ) | ||
| lspprvacl.x | |- ( ph -> X e. V ) | ||
| lspprvacl.y | |- ( ph -> Y e. V ) | ||
| Assertion | lspprvacl | |- ( ph -> ( X .+ Y ) e. ( N ` { X , Y } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lspprvacl.v | |- V = ( Base ` W ) | |
| 2 | lspprvacl.p | |- .+ = ( +g ` W ) | |
| 3 | lspprvacl.n | |- N = ( LSpan ` W ) | |
| 4 | lspprvacl.w | |- ( ph -> W e. LMod ) | |
| 5 | lspprvacl.x | |- ( ph -> X e. V ) | |
| 6 | lspprvacl.y | |- ( ph -> Y e. V ) | |
| 7 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) | |
| 8 | 1 7 3 4 5 6 | lspprcl |  |-  ( ph -> ( N ` { X , Y } ) e. ( LSubSp ` W ) ) | 
| 9 | 1 3 4 5 6 | lspprid1 |  |-  ( ph -> X e. ( N ` { X , Y } ) ) | 
| 10 | 1 3 4 5 6 | lspprid2 |  |-  ( ph -> Y e. ( N ` { X , Y } ) ) | 
| 11 | 2 7 | lssvacl |  |-  ( ( ( W e. LMod /\ ( N ` { X , Y } ) e. ( LSubSp ` W ) ) /\ ( X e. ( N ` { X , Y } ) /\ Y e. ( N ` { X , Y } ) ) ) -> ( X .+ Y ) e. ( N ` { X , Y } ) ) | 
| 12 | 4 8 9 10 11 | syl22anc |  |-  ( ph -> ( X .+ Y ) e. ( N ` { X , Y } ) ) |