Description: Span of the singleton of the zero vector. ( spansn0 analog.) (Contributed by NM, 15-Jan-2014) (Proof shortened by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsn0.z | |- .0. = ( 0g ` W ) | |
| lspsn0.n | |- N = ( LSpan ` W ) | ||
| Assertion | lspsn0 | |- ( W e. LMod -> ( N ` { .0. } ) = { .0. } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lspsn0.z | |- .0. = ( 0g ` W ) | |
| 2 | lspsn0.n | |- N = ( LSpan ` W ) | |
| 3 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) | |
| 4 | 1 3 | lsssn0 |  |-  ( W e. LMod -> { .0. } e. ( LSubSp ` W ) ) | 
| 5 | 3 2 | lspid |  |-  ( ( W e. LMod /\ { .0. } e. ( LSubSp ` W ) ) -> ( N ` { .0. } ) = { .0. } ) | 
| 6 | 4 5 | mpdan |  |-  ( W e. LMod -> ( N ` { .0. } ) = { .0. } ) |