Description: The span of a singleton is a subspace (frequently used special case of lspcl ). (Contributed by NM, 17-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspval.v | |- V = ( Base ` W ) |
|
| lspval.s | |- S = ( LSubSp ` W ) |
||
| lspval.n | |- N = ( LSpan ` W ) |
||
| Assertion | lspsncl | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspval.v | |- V = ( Base ` W ) |
|
| 2 | lspval.s | |- S = ( LSubSp ` W ) |
|
| 3 | lspval.n | |- N = ( LSpan ` W ) |
|
| 4 | snssi | |- ( X e. V -> { X } C_ V ) |
|
| 5 | 1 2 3 | lspcl | |- ( ( W e. LMod /\ { X } C_ V ) -> ( N ` { X } ) e. S ) |
| 6 | 4 5 | sylan2 | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. S ) |