Metamath Proof Explorer


Theorem lspsnel5

Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014)

Ref Expression
Hypotheses lspsnel5.v
|- V = ( Base ` W )
lspsnel5.s
|- S = ( LSubSp ` W )
lspsnel5.n
|- N = ( LSpan ` W )
lspsnel5.w
|- ( ph -> W e. LMod )
lspsnel5.a
|- ( ph -> U e. S )
lspsnel5.x
|- ( ph -> X e. V )
Assertion lspsnel5
|- ( ph -> ( X e. U <-> ( N ` { X } ) C_ U ) )

Proof

Step Hyp Ref Expression
1 lspsnel5.v
 |-  V = ( Base ` W )
2 lspsnel5.s
 |-  S = ( LSubSp ` W )
3 lspsnel5.n
 |-  N = ( LSpan ` W )
4 lspsnel5.w
 |-  ( ph -> W e. LMod )
5 lspsnel5.a
 |-  ( ph -> U e. S )
6 lspsnel5.x
 |-  ( ph -> X e. V )
7 1 2 3 4 5 lspsnel6
 |-  ( ph -> ( X e. U <-> ( X e. V /\ ( N ` { X } ) C_ U ) ) )
8 6 7 mpbirand
 |-  ( ph -> ( X e. U <-> ( N ` { X } ) C_ U ) )