Metamath Proof Explorer


Theorem lspsnel5a

Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015)

Ref Expression
Hypotheses lspsnel5a.s
|- S = ( LSubSp ` W )
lspsnel5a.n
|- N = ( LSpan ` W )
lspsnel5a.w
|- ( ph -> W e. LMod )
lspsnel5a.a
|- ( ph -> U e. S )
lspsnel5a.x
|- ( ph -> X e. U )
Assertion lspsnel5a
|- ( ph -> ( N ` { X } ) C_ U )

Proof

Step Hyp Ref Expression
1 lspsnel5a.s
 |-  S = ( LSubSp ` W )
2 lspsnel5a.n
 |-  N = ( LSpan ` W )
3 lspsnel5a.w
 |-  ( ph -> W e. LMod )
4 lspsnel5a.a
 |-  ( ph -> U e. S )
5 lspsnel5a.x
 |-  ( ph -> X e. U )
6 eqid
 |-  ( Base ` W ) = ( Base ` W )
7 6 1 lssel
 |-  ( ( U e. S /\ X e. U ) -> X e. ( Base ` W ) )
8 4 5 7 syl2anc
 |-  ( ph -> X e. ( Base ` W ) )
9 6 1 2 3 4 8 lspsnel5
 |-  ( ph -> ( X e. U <-> ( N ` { X } ) C_ U ) )
10 5 9 mpbid
 |-  ( ph -> ( N ` { X } ) C_ U )