| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsneleq.v |
|- V = ( Base ` W ) |
| 2 |
|
lspsneleq.o |
|- .0. = ( 0g ` W ) |
| 3 |
|
lspsneleq.n |
|- N = ( LSpan ` W ) |
| 4 |
|
lspsneleq.w |
|- ( ph -> W e. LVec ) |
| 5 |
|
lspsneleq.x |
|- ( ph -> X e. V ) |
| 6 |
|
lspsneleq.y |
|- ( ph -> Y e. ( N ` { X } ) ) |
| 7 |
|
lspsneleq.z |
|- ( ph -> Y =/= .0. ) |
| 8 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 9 |
4 8
|
syl |
|- ( ph -> W e. LMod ) |
| 10 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 11 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 12 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 13 |
10 11 1 12 3
|
ellspsn |
|- ( ( W e. LMod /\ X e. V ) -> ( Y e. ( N ` { X } ) <-> E. k e. ( Base ` ( Scalar ` W ) ) Y = ( k ( .s ` W ) X ) ) ) |
| 14 |
9 5 13
|
syl2anc |
|- ( ph -> ( Y e. ( N ` { X } ) <-> E. k e. ( Base ` ( Scalar ` W ) ) Y = ( k ( .s ` W ) X ) ) ) |
| 15 |
|
simpr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> Y = ( k ( .s ` W ) X ) ) |
| 16 |
15
|
sneqd |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> { Y } = { ( k ( .s ` W ) X ) } ) |
| 17 |
16
|
fveq2d |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> ( N ` { Y } ) = ( N ` { ( k ( .s ` W ) X ) } ) ) |
| 18 |
4
|
ad2antrr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> W e. LVec ) |
| 19 |
|
simplr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> k e. ( Base ` ( Scalar ` W ) ) ) |
| 20 |
7
|
ad2antrr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> Y =/= .0. ) |
| 21 |
|
simplr |
|- ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> Y = ( k ( .s ` W ) X ) ) |
| 22 |
|
simpr |
|- ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> k = ( 0g ` ( Scalar ` W ) ) ) |
| 23 |
22
|
oveq1d |
|- ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> ( k ( .s ` W ) X ) = ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) X ) ) |
| 24 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
| 25 |
1 10 12 24 2
|
lmod0vs |
|- ( ( W e. LMod /\ X e. V ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) X ) = .0. ) |
| 26 |
9 5 25
|
syl2anc |
|- ( ph -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) X ) = .0. ) |
| 27 |
26
|
ad3antrrr |
|- ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) X ) = .0. ) |
| 28 |
21 23 27
|
3eqtrd |
|- ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> Y = .0. ) |
| 29 |
28
|
ex |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> ( k = ( 0g ` ( Scalar ` W ) ) -> Y = .0. ) ) |
| 30 |
29
|
necon3d |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> ( Y =/= .0. -> k =/= ( 0g ` ( Scalar ` W ) ) ) ) |
| 31 |
20 30
|
mpd |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> k =/= ( 0g ` ( Scalar ` W ) ) ) |
| 32 |
5
|
ad2antrr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> X e. V ) |
| 33 |
1 10 12 11 24 3
|
lspsnvs |
|- ( ( W e. LVec /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ k =/= ( 0g ` ( Scalar ` W ) ) ) /\ X e. V ) -> ( N ` { ( k ( .s ` W ) X ) } ) = ( N ` { X } ) ) |
| 34 |
18 19 31 32 33
|
syl121anc |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> ( N ` { ( k ( .s ` W ) X ) } ) = ( N ` { X } ) ) |
| 35 |
17 34
|
eqtrd |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> ( N ` { Y } ) = ( N ` { X } ) ) |
| 36 |
35
|
rexlimdva2 |
|- ( ph -> ( E. k e. ( Base ` ( Scalar ` W ) ) Y = ( k ( .s ` W ) X ) -> ( N ` { Y } ) = ( N ` { X } ) ) ) |
| 37 |
14 36
|
sylbid |
|- ( ph -> ( Y e. ( N ` { X } ) -> ( N ` { Y } ) = ( N ` { X } ) ) ) |
| 38 |
6 37
|
mpd |
|- ( ph -> ( N ` { Y } ) = ( N ` { X } ) ) |