Step |
Hyp |
Ref |
Expression |
1 |
|
lspsneleq.v |
|- V = ( Base ` W ) |
2 |
|
lspsneleq.o |
|- .0. = ( 0g ` W ) |
3 |
|
lspsneleq.n |
|- N = ( LSpan ` W ) |
4 |
|
lspsneleq.w |
|- ( ph -> W e. LVec ) |
5 |
|
lspsneleq.x |
|- ( ph -> X e. V ) |
6 |
|
lspsneleq.y |
|- ( ph -> Y e. ( N ` { X } ) ) |
7 |
|
lspsneleq.z |
|- ( ph -> Y =/= .0. ) |
8 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
9 |
4 8
|
syl |
|- ( ph -> W e. LMod ) |
10 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
11 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
12 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
13 |
10 11 1 12 3
|
lspsnel |
|- ( ( W e. LMod /\ X e. V ) -> ( Y e. ( N ` { X } ) <-> E. k e. ( Base ` ( Scalar ` W ) ) Y = ( k ( .s ` W ) X ) ) ) |
14 |
9 5 13
|
syl2anc |
|- ( ph -> ( Y e. ( N ` { X } ) <-> E. k e. ( Base ` ( Scalar ` W ) ) Y = ( k ( .s ` W ) X ) ) ) |
15 |
|
simpr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> Y = ( k ( .s ` W ) X ) ) |
16 |
15
|
sneqd |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> { Y } = { ( k ( .s ` W ) X ) } ) |
17 |
16
|
fveq2d |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> ( N ` { Y } ) = ( N ` { ( k ( .s ` W ) X ) } ) ) |
18 |
4
|
ad2antrr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> W e. LVec ) |
19 |
|
simplr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> k e. ( Base ` ( Scalar ` W ) ) ) |
20 |
7
|
ad2antrr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> Y =/= .0. ) |
21 |
|
simplr |
|- ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> Y = ( k ( .s ` W ) X ) ) |
22 |
|
simpr |
|- ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> k = ( 0g ` ( Scalar ` W ) ) ) |
23 |
22
|
oveq1d |
|- ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> ( k ( .s ` W ) X ) = ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) X ) ) |
24 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
25 |
1 10 12 24 2
|
lmod0vs |
|- ( ( W e. LMod /\ X e. V ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) X ) = .0. ) |
26 |
9 5 25
|
syl2anc |
|- ( ph -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) X ) = .0. ) |
27 |
26
|
ad3antrrr |
|- ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) X ) = .0. ) |
28 |
21 23 27
|
3eqtrd |
|- ( ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> Y = .0. ) |
29 |
28
|
ex |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> ( k = ( 0g ` ( Scalar ` W ) ) -> Y = .0. ) ) |
30 |
29
|
necon3d |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> ( Y =/= .0. -> k =/= ( 0g ` ( Scalar ` W ) ) ) ) |
31 |
20 30
|
mpd |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> k =/= ( 0g ` ( Scalar ` W ) ) ) |
32 |
5
|
ad2antrr |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> X e. V ) |
33 |
1 10 12 11 24 3
|
lspsnvs |
|- ( ( W e. LVec /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ k =/= ( 0g ` ( Scalar ` W ) ) ) /\ X e. V ) -> ( N ` { ( k ( .s ` W ) X ) } ) = ( N ` { X } ) ) |
34 |
18 19 31 32 33
|
syl121anc |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> ( N ` { ( k ( .s ` W ) X ) } ) = ( N ` { X } ) ) |
35 |
17 34
|
eqtrd |
|- ( ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ Y = ( k ( .s ` W ) X ) ) -> ( N ` { Y } ) = ( N ` { X } ) ) |
36 |
35
|
rexlimdva2 |
|- ( ph -> ( E. k e. ( Base ` ( Scalar ` W ) ) Y = ( k ( .s ` W ) X ) -> ( N ` { Y } ) = ( N ` { X } ) ) ) |
37 |
14 36
|
sylbid |
|- ( ph -> ( Y e. ( N ` { X } ) -> ( N ` { Y } ) = ( N ` { X } ) ) ) |
38 |
6 37
|
mpd |
|- ( ph -> ( N ` { Y } ) = ( N ` { X } ) ) |