Step |
Hyp |
Ref |
Expression |
1 |
|
lspsneq.v |
|- V = ( Base ` W ) |
2 |
|
lspsneq.s |
|- S = ( Scalar ` W ) |
3 |
|
lspsneq.k |
|- K = ( Base ` S ) |
4 |
|
lspsneq.o |
|- .0. = ( 0g ` S ) |
5 |
|
lspsneq.t |
|- .x. = ( .s ` W ) |
6 |
|
lspsneq.n |
|- N = ( LSpan ` W ) |
7 |
|
lspsneq.w |
|- ( ph -> W e. LVec ) |
8 |
|
lspsneq.x |
|- ( ph -> X e. V ) |
9 |
|
lspsneq.y |
|- ( ph -> Y e. V ) |
10 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
11 |
7 10
|
syl |
|- ( ph -> W e. LMod ) |
12 |
2
|
lmodring |
|- ( W e. LMod -> S e. Ring ) |
13 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
14 |
3 13
|
ringidcl |
|- ( S e. Ring -> ( 1r ` S ) e. K ) |
15 |
11 12 14
|
3syl |
|- ( ph -> ( 1r ` S ) e. K ) |
16 |
2
|
lvecdrng |
|- ( W e. LVec -> S e. DivRing ) |
17 |
4 13
|
drngunz |
|- ( S e. DivRing -> ( 1r ` S ) =/= .0. ) |
18 |
7 16 17
|
3syl |
|- ( ph -> ( 1r ` S ) =/= .0. ) |
19 |
|
eldifsn |
|- ( ( 1r ` S ) e. ( K \ { .0. } ) <-> ( ( 1r ` S ) e. K /\ ( 1r ` S ) =/= .0. ) ) |
20 |
15 18 19
|
sylanbrc |
|- ( ph -> ( 1r ` S ) e. ( K \ { .0. } ) ) |
21 |
20
|
ad2antrr |
|- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y = ( 0g ` W ) ) -> ( 1r ` S ) e. ( K \ { .0. } ) ) |
22 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
23 |
1 22
|
lmod0vcl |
|- ( W e. LMod -> ( 0g ` W ) e. V ) |
24 |
1 2 5 13
|
lmodvs1 |
|- ( ( W e. LMod /\ ( 0g ` W ) e. V ) -> ( ( 1r ` S ) .x. ( 0g ` W ) ) = ( 0g ` W ) ) |
25 |
11 23 24
|
syl2anc2 |
|- ( ph -> ( ( 1r ` S ) .x. ( 0g ` W ) ) = ( 0g ` W ) ) |
26 |
25
|
ad2antrr |
|- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y = ( 0g ` W ) ) -> ( ( 1r ` S ) .x. ( 0g ` W ) ) = ( 0g ` W ) ) |
27 |
|
oveq2 |
|- ( Y = ( 0g ` W ) -> ( ( 1r ` S ) .x. Y ) = ( ( 1r ` S ) .x. ( 0g ` W ) ) ) |
28 |
27
|
adantl |
|- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y = ( 0g ` W ) ) -> ( ( 1r ` S ) .x. Y ) = ( ( 1r ` S ) .x. ( 0g ` W ) ) ) |
29 |
11
|
adantr |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> W e. LMod ) |
30 |
8
|
adantr |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> X e. V ) |
31 |
9
|
adantr |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> Y e. V ) |
32 |
|
simpr |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
33 |
1 22 6 29 30 31 32
|
lspsneq0b |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> ( X = ( 0g ` W ) <-> Y = ( 0g ` W ) ) ) |
34 |
33
|
biimpar |
|- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y = ( 0g ` W ) ) -> X = ( 0g ` W ) ) |
35 |
26 28 34
|
3eqtr4rd |
|- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y = ( 0g ` W ) ) -> X = ( ( 1r ` S ) .x. Y ) ) |
36 |
|
oveq1 |
|- ( j = ( 1r ` S ) -> ( j .x. Y ) = ( ( 1r ` S ) .x. Y ) ) |
37 |
36
|
rspceeqv |
|- ( ( ( 1r ` S ) e. ( K \ { .0. } ) /\ X = ( ( 1r ` S ) .x. Y ) ) -> E. j e. ( K \ { .0. } ) X = ( j .x. Y ) ) |
38 |
21 35 37
|
syl2anc |
|- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y = ( 0g ` W ) ) -> E. j e. ( K \ { .0. } ) X = ( j .x. Y ) ) |
39 |
|
eqimss |
|- ( ( N ` { X } ) = ( N ` { Y } ) -> ( N ` { X } ) C_ ( N ` { Y } ) ) |
40 |
39
|
adantl |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> ( N ` { X } ) C_ ( N ` { Y } ) ) |
41 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
42 |
1 41 6
|
lspsncl |
|- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
43 |
11 9 42
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
44 |
43
|
adantr |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
45 |
1 41 6 29 44 30
|
lspsnel5 |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> ( X e. ( N ` { Y } ) <-> ( N ` { X } ) C_ ( N ` { Y } ) ) ) |
46 |
40 45
|
mpbird |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> X e. ( N ` { Y } ) ) |
47 |
2 3 1 5 6
|
lspsnel |
|- ( ( W e. LMod /\ Y e. V ) -> ( X e. ( N ` { Y } ) <-> E. j e. K X = ( j .x. Y ) ) ) |
48 |
29 31 47
|
syl2anc |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> ( X e. ( N ` { Y } ) <-> E. j e. K X = ( j .x. Y ) ) ) |
49 |
46 48
|
mpbid |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> E. j e. K X = ( j .x. Y ) ) |
50 |
49
|
adantr |
|- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) -> E. j e. K X = ( j .x. Y ) ) |
51 |
|
simprl |
|- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> j e. K ) |
52 |
|
simpr |
|- ( ( j e. K /\ X = ( j .x. Y ) ) -> X = ( j .x. Y ) ) |
53 |
52
|
adantl |
|- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> X = ( j .x. Y ) ) |
54 |
33
|
biimpd |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> ( X = ( 0g ` W ) -> Y = ( 0g ` W ) ) ) |
55 |
54
|
necon3d |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> ( Y =/= ( 0g ` W ) -> X =/= ( 0g ` W ) ) ) |
56 |
55
|
imp |
|- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) -> X =/= ( 0g ` W ) ) |
57 |
56
|
adantr |
|- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> X =/= ( 0g ` W ) ) |
58 |
53 57
|
eqnetrrd |
|- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> ( j .x. Y ) =/= ( 0g ` W ) ) |
59 |
7
|
adantr |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> W e. LVec ) |
60 |
59
|
ad2antrr |
|- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> W e. LVec ) |
61 |
31
|
ad2antrr |
|- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> Y e. V ) |
62 |
1 5 2 3 4 22 60 51 61
|
lvecvsn0 |
|- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> ( ( j .x. Y ) =/= ( 0g ` W ) <-> ( j =/= .0. /\ Y =/= ( 0g ` W ) ) ) ) |
63 |
58 62
|
mpbid |
|- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> ( j =/= .0. /\ Y =/= ( 0g ` W ) ) ) |
64 |
63
|
simpld |
|- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> j =/= .0. ) |
65 |
|
eldifsn |
|- ( j e. ( K \ { .0. } ) <-> ( j e. K /\ j =/= .0. ) ) |
66 |
51 64 65
|
sylanbrc |
|- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> j e. ( K \ { .0. } ) ) |
67 |
50 66 53
|
reximssdv |
|- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) -> E. j e. ( K \ { .0. } ) X = ( j .x. Y ) ) |
68 |
38 67
|
pm2.61dane |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> E. j e. ( K \ { .0. } ) X = ( j .x. Y ) ) |
69 |
68
|
ex |
|- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) -> E. j e. ( K \ { .0. } ) X = ( j .x. Y ) ) ) |
70 |
7
|
adantr |
|- ( ( ph /\ j e. ( K \ { .0. } ) ) -> W e. LVec ) |
71 |
|
eldifi |
|- ( j e. ( K \ { .0. } ) -> j e. K ) |
72 |
71
|
adantl |
|- ( ( ph /\ j e. ( K \ { .0. } ) ) -> j e. K ) |
73 |
|
eldifsni |
|- ( j e. ( K \ { .0. } ) -> j =/= .0. ) |
74 |
73
|
adantl |
|- ( ( ph /\ j e. ( K \ { .0. } ) ) -> j =/= .0. ) |
75 |
9
|
adantr |
|- ( ( ph /\ j e. ( K \ { .0. } ) ) -> Y e. V ) |
76 |
1 2 5 3 4 6
|
lspsnvs |
|- ( ( W e. LVec /\ ( j e. K /\ j =/= .0. ) /\ Y e. V ) -> ( N ` { ( j .x. Y ) } ) = ( N ` { Y } ) ) |
77 |
70 72 74 75 76
|
syl121anc |
|- ( ( ph /\ j e. ( K \ { .0. } ) ) -> ( N ` { ( j .x. Y ) } ) = ( N ` { Y } ) ) |
78 |
77
|
ex |
|- ( ph -> ( j e. ( K \ { .0. } ) -> ( N ` { ( j .x. Y ) } ) = ( N ` { Y } ) ) ) |
79 |
|
sneq |
|- ( X = ( j .x. Y ) -> { X } = { ( j .x. Y ) } ) |
80 |
79
|
fveqeq2d |
|- ( X = ( j .x. Y ) -> ( ( N ` { X } ) = ( N ` { Y } ) <-> ( N ` { ( j .x. Y ) } ) = ( N ` { Y } ) ) ) |
81 |
80
|
biimprcd |
|- ( ( N ` { ( j .x. Y ) } ) = ( N ` { Y } ) -> ( X = ( j .x. Y ) -> ( N ` { X } ) = ( N ` { Y } ) ) ) |
82 |
78 81
|
syl6 |
|- ( ph -> ( j e. ( K \ { .0. } ) -> ( X = ( j .x. Y ) -> ( N ` { X } ) = ( N ` { Y } ) ) ) ) |
83 |
82
|
rexlimdv |
|- ( ph -> ( E. j e. ( K \ { .0. } ) X = ( j .x. Y ) -> ( N ` { X } ) = ( N ` { Y } ) ) ) |
84 |
69 83
|
impbid |
|- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) <-> E. j e. ( K \ { .0. } ) X = ( j .x. Y ) ) ) |
85 |
|
oveq1 |
|- ( j = k -> ( j .x. Y ) = ( k .x. Y ) ) |
86 |
85
|
eqeq2d |
|- ( j = k -> ( X = ( j .x. Y ) <-> X = ( k .x. Y ) ) ) |
87 |
86
|
cbvrexvw |
|- ( E. j e. ( K \ { .0. } ) X = ( j .x. Y ) <-> E. k e. ( K \ { .0. } ) X = ( k .x. Y ) ) |
88 |
84 87
|
bitrdi |
|- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) <-> E. k e. ( K \ { .0. } ) X = ( k .x. Y ) ) ) |