| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspsneq0.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | lspsneq0.z |  |-  .0. = ( 0g ` W ) | 
						
							| 3 |  | lspsneq0.n |  |-  N = ( LSpan ` W ) | 
						
							| 4 | 1 3 | lspsnid |  |-  ( ( W e. LMod /\ X e. V ) -> X e. ( N ` { X } ) ) | 
						
							| 5 |  | eleq2 |  |-  ( ( N ` { X } ) = { .0. } -> ( X e. ( N ` { X } ) <-> X e. { .0. } ) ) | 
						
							| 6 | 4 5 | syl5ibcom |  |-  ( ( W e. LMod /\ X e. V ) -> ( ( N ` { X } ) = { .0. } -> X e. { .0. } ) ) | 
						
							| 7 |  | elsni |  |-  ( X e. { .0. } -> X = .0. ) | 
						
							| 8 | 6 7 | syl6 |  |-  ( ( W e. LMod /\ X e. V ) -> ( ( N ` { X } ) = { .0. } -> X = .0. ) ) | 
						
							| 9 | 2 3 | lspsn0 |  |-  ( W e. LMod -> ( N ` { .0. } ) = { .0. } ) | 
						
							| 10 | 9 | adantr |  |-  ( ( W e. LMod /\ X e. V ) -> ( N ` { .0. } ) = { .0. } ) | 
						
							| 11 |  | sneq |  |-  ( X = .0. -> { X } = { .0. } ) | 
						
							| 12 | 11 | fveqeq2d |  |-  ( X = .0. -> ( ( N ` { X } ) = { .0. } <-> ( N ` { .0. } ) = { .0. } ) ) | 
						
							| 13 | 10 12 | syl5ibrcom |  |-  ( ( W e. LMod /\ X e. V ) -> ( X = .0. -> ( N ` { X } ) = { .0. } ) ) | 
						
							| 14 | 8 13 | impbid |  |-  ( ( W e. LMod /\ X e. V ) -> ( ( N ` { X } ) = { .0. } <-> X = .0. ) ) |