Step |
Hyp |
Ref |
Expression |
1 |
|
lspsneq0b.v |
|- V = ( Base ` W ) |
2 |
|
lspsneq0b.o |
|- .0. = ( 0g ` W ) |
3 |
|
lspsneq0b.n |
|- N = ( LSpan ` W ) |
4 |
|
lspsneq0b.w |
|- ( ph -> W e. LMod ) |
5 |
|
lspsneq0b.x |
|- ( ph -> X e. V ) |
6 |
|
lspsneq0b.y |
|- ( ph -> Y e. V ) |
7 |
|
lspsneq0b.e |
|- ( ph -> ( N ` { X } ) = ( N ` { Y } ) ) |
8 |
7
|
adantr |
|- ( ( ph /\ X = .0. ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
9 |
1 2 3
|
lspsneq0 |
|- ( ( W e. LMod /\ X e. V ) -> ( ( N ` { X } ) = { .0. } <-> X = .0. ) ) |
10 |
4 5 9
|
syl2anc |
|- ( ph -> ( ( N ` { X } ) = { .0. } <-> X = .0. ) ) |
11 |
10
|
biimpar |
|- ( ( ph /\ X = .0. ) -> ( N ` { X } ) = { .0. } ) |
12 |
8 11
|
eqtr3d |
|- ( ( ph /\ X = .0. ) -> ( N ` { Y } ) = { .0. } ) |
13 |
1 2 3
|
lspsneq0 |
|- ( ( W e. LMod /\ Y e. V ) -> ( ( N ` { Y } ) = { .0. } <-> Y = .0. ) ) |
14 |
4 6 13
|
syl2anc |
|- ( ph -> ( ( N ` { Y } ) = { .0. } <-> Y = .0. ) ) |
15 |
14
|
adantr |
|- ( ( ph /\ X = .0. ) -> ( ( N ` { Y } ) = { .0. } <-> Y = .0. ) ) |
16 |
12 15
|
mpbid |
|- ( ( ph /\ X = .0. ) -> Y = .0. ) |
17 |
7
|
adantr |
|- ( ( ph /\ Y = .0. ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
18 |
14
|
biimpar |
|- ( ( ph /\ Y = .0. ) -> ( N ` { Y } ) = { .0. } ) |
19 |
17 18
|
eqtrd |
|- ( ( ph /\ Y = .0. ) -> ( N ` { X } ) = { .0. } ) |
20 |
10
|
adantr |
|- ( ( ph /\ Y = .0. ) -> ( ( N ` { X } ) = { .0. } <-> X = .0. ) ) |
21 |
19 20
|
mpbid |
|- ( ( ph /\ Y = .0. ) -> X = .0. ) |
22 |
16 21
|
impbida |
|- ( ph -> ( X = .0. <-> Y = .0. ) ) |