| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspsneu.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | lspsneu.s |  |-  S = ( Scalar ` W ) | 
						
							| 3 |  | lspsneu.k |  |-  K = ( Base ` S ) | 
						
							| 4 |  | lspsneu.o |  |-  O = ( 0g ` S ) | 
						
							| 5 |  | lspsneu.t |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | lspsneu.z |  |-  .0. = ( 0g ` W ) | 
						
							| 7 |  | lspsneu.n |  |-  N = ( LSpan ` W ) | 
						
							| 8 |  | lspsneu.w |  |-  ( ph -> W e. LVec ) | 
						
							| 9 |  | lspsneu.x |  |-  ( ph -> X e. V ) | 
						
							| 10 |  | lspsneu.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 11 | 10 | eldifad |  |-  ( ph -> Y e. V ) | 
						
							| 12 | 1 2 3 4 5 7 8 9 11 | lspsneq |  |-  ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) <-> E. j e. ( K \ { O } ) X = ( j .x. Y ) ) ) | 
						
							| 13 | 12 | biimpd |  |-  ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) -> E. j e. ( K \ { O } ) X = ( j .x. Y ) ) ) | 
						
							| 14 |  | eqtr2 |  |-  ( ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) -> ( j .x. Y ) = ( i .x. Y ) ) | 
						
							| 15 | 14 | 3ad2ant3 |  |-  ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> ( j .x. Y ) = ( i .x. Y ) ) | 
						
							| 16 |  | simp1l |  |-  ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> ph ) | 
						
							| 17 | 16 8 | syl |  |-  ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> W e. LVec ) | 
						
							| 18 |  | simp2l |  |-  ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> j e. ( K \ { O } ) ) | 
						
							| 19 | 18 | eldifad |  |-  ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> j e. K ) | 
						
							| 20 |  | simp2r |  |-  ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> i e. ( K \ { O } ) ) | 
						
							| 21 | 20 | eldifad |  |-  ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> i e. K ) | 
						
							| 22 | 16 11 | syl |  |-  ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> Y e. V ) | 
						
							| 23 |  | eldifsni |  |-  ( Y e. ( V \ { .0. } ) -> Y =/= .0. ) | 
						
							| 24 | 16 10 23 | 3syl |  |-  ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> Y =/= .0. ) | 
						
							| 25 | 1 5 2 3 6 17 19 21 22 24 | lvecvscan2 |  |-  ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> ( ( j .x. Y ) = ( i .x. Y ) <-> j = i ) ) | 
						
							| 26 | 15 25 | mpbid |  |-  ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) /\ ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) ) -> j = i ) | 
						
							| 27 | 26 | 3exp |  |-  ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> ( ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) -> ( ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) -> j = i ) ) ) | 
						
							| 28 | 27 | ex |  |-  ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) -> ( ( j e. ( K \ { O } ) /\ i e. ( K \ { O } ) ) -> ( ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) -> j = i ) ) ) ) | 
						
							| 29 | 28 | ralrimdvv |  |-  ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) -> A. j e. ( K \ { O } ) A. i e. ( K \ { O } ) ( ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) -> j = i ) ) ) | 
						
							| 30 | 13 29 | jcad |  |-  ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) -> ( E. j e. ( K \ { O } ) X = ( j .x. Y ) /\ A. j e. ( K \ { O } ) A. i e. ( K \ { O } ) ( ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) -> j = i ) ) ) ) | 
						
							| 31 |  | oveq1 |  |-  ( j = i -> ( j .x. Y ) = ( i .x. Y ) ) | 
						
							| 32 | 31 | eqeq2d |  |-  ( j = i -> ( X = ( j .x. Y ) <-> X = ( i .x. Y ) ) ) | 
						
							| 33 | 32 | reu4 |  |-  ( E! j e. ( K \ { O } ) X = ( j .x. Y ) <-> ( E. j e. ( K \ { O } ) X = ( j .x. Y ) /\ A. j e. ( K \ { O } ) A. i e. ( K \ { O } ) ( ( X = ( j .x. Y ) /\ X = ( i .x. Y ) ) -> j = i ) ) ) | 
						
							| 34 | 30 33 | imbitrrdi |  |-  ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) -> E! j e. ( K \ { O } ) X = ( j .x. Y ) ) ) | 
						
							| 35 |  | reurex |  |-  ( E! j e. ( K \ { O } ) X = ( j .x. Y ) -> E. j e. ( K \ { O } ) X = ( j .x. Y ) ) | 
						
							| 36 | 35 12 | imbitrrid |  |-  ( ph -> ( E! j e. ( K \ { O } ) X = ( j .x. Y ) -> ( N ` { X } ) = ( N ` { Y } ) ) ) | 
						
							| 37 | 34 36 | impbid |  |-  ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) <-> E! j e. ( K \ { O } ) X = ( j .x. Y ) ) ) | 
						
							| 38 |  | oveq1 |  |-  ( j = k -> ( j .x. Y ) = ( k .x. Y ) ) | 
						
							| 39 | 38 | eqeq2d |  |-  ( j = k -> ( X = ( j .x. Y ) <-> X = ( k .x. Y ) ) ) | 
						
							| 40 | 39 | cbvreuvw |  |-  ( E! j e. ( K \ { O } ) X = ( j .x. Y ) <-> E! k e. ( K \ { O } ) X = ( k .x. Y ) ) | 
						
							| 41 | 37 40 | bitrdi |  |-  ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) <-> E! k e. ( K \ { O } ) X = ( k .x. Y ) ) ) |