| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspsnne1.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | lspsnne1.o |  |-  .0. = ( 0g ` W ) | 
						
							| 3 |  | lspsnne1.n |  |-  N = ( LSpan ` W ) | 
						
							| 4 |  | lspsnne1.w |  |-  ( ph -> W e. LVec ) | 
						
							| 5 |  | lspsnne1.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 6 |  | lspsnne1.y |  |-  ( ph -> Y e. V ) | 
						
							| 7 |  | lspsnne1.e |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 8 |  | eqid |  |-  ( LSubSp ` W ) = ( LSubSp ` W ) | 
						
							| 9 |  | lveclmod |  |-  ( W e. LVec -> W e. LMod ) | 
						
							| 10 | 4 9 | syl |  |-  ( ph -> W e. LMod ) | 
						
							| 11 | 1 8 3 | lspsncl |  |-  ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) | 
						
							| 12 | 10 6 11 | syl2anc |  |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) | 
						
							| 13 | 5 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 14 | 1 8 3 10 12 13 | ellspsn5b |  |-  ( ph -> ( X e. ( N ` { Y } ) <-> ( N ` { X } ) C_ ( N ` { Y } ) ) ) | 
						
							| 15 | 14 | notbid |  |-  ( ph -> ( -. X e. ( N ` { Y } ) <-> -. ( N ` { X } ) C_ ( N ` { Y } ) ) ) | 
						
							| 16 | 1 2 3 4 5 6 | lspsncmp |  |-  ( ph -> ( ( N ` { X } ) C_ ( N ` { Y } ) <-> ( N ` { X } ) = ( N ` { Y } ) ) ) | 
						
							| 17 | 16 | necon3bbid |  |-  ( ph -> ( -. ( N ` { X } ) C_ ( N ` { Y } ) <-> ( N ` { X } ) =/= ( N ` { Y } ) ) ) | 
						
							| 18 | 15 17 | bitrd |  |-  ( ph -> ( -. X e. ( N ` { Y } ) <-> ( N ` { X } ) =/= ( N ` { Y } ) ) ) | 
						
							| 19 | 7 18 | mpbird |  |-  ( ph -> -. X e. ( N ` { Y } ) ) |