Step |
Hyp |
Ref |
Expression |
1 |
|
lspsnne2.v |
|- V = ( Base ` W ) |
2 |
|
lspsnne2.n |
|- N = ( LSpan ` W ) |
3 |
|
lspsnne2.w |
|- ( ph -> W e. LMod ) |
4 |
|
lspsnne2.x |
|- ( ph -> X e. V ) |
5 |
|
lspsnne2.y |
|- ( ph -> Y e. V ) |
6 |
|
lspsnne2.e |
|- ( ph -> -. X e. ( N ` { Y } ) ) |
7 |
|
eqimss |
|- ( ( N ` { X } ) = ( N ` { Y } ) -> ( N ` { X } ) C_ ( N ` { Y } ) ) |
8 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
9 |
1 8 2
|
lspsncl |
|- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
10 |
3 5 9
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
11 |
1 8 2 3 10 4
|
lspsnel5 |
|- ( ph -> ( X e. ( N ` { Y } ) <-> ( N ` { X } ) C_ ( N ` { Y } ) ) ) |
12 |
7 11
|
syl5ibr |
|- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) -> X e. ( N ` { Y } ) ) ) |
13 |
12
|
necon3bd |
|- ( ph -> ( -. X e. ( N ` { Y } ) -> ( N ` { X } ) =/= ( N ` { Y } ) ) ) |
14 |
6 13
|
mpd |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |