Metamath Proof Explorer


Theorem lspsnne2

Description: Two ways to express that vectors have different spans. (Contributed by NM, 20-May-2015)

Ref Expression
Hypotheses lspsnne2.v
|- V = ( Base ` W )
lspsnne2.n
|- N = ( LSpan ` W )
lspsnne2.w
|- ( ph -> W e. LMod )
lspsnne2.x
|- ( ph -> X e. V )
lspsnne2.y
|- ( ph -> Y e. V )
lspsnne2.e
|- ( ph -> -. X e. ( N ` { Y } ) )
Assertion lspsnne2
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )

Proof

Step Hyp Ref Expression
1 lspsnne2.v
 |-  V = ( Base ` W )
2 lspsnne2.n
 |-  N = ( LSpan ` W )
3 lspsnne2.w
 |-  ( ph -> W e. LMod )
4 lspsnne2.x
 |-  ( ph -> X e. V )
5 lspsnne2.y
 |-  ( ph -> Y e. V )
6 lspsnne2.e
 |-  ( ph -> -. X e. ( N ` { Y } ) )
7 eqimss
 |-  ( ( N ` { X } ) = ( N ` { Y } ) -> ( N ` { X } ) C_ ( N ` { Y } ) )
8 eqid
 |-  ( LSubSp ` W ) = ( LSubSp ` W )
9 1 8 2 lspsncl
 |-  ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) )
10 3 5 9 syl2anc
 |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) )
11 1 8 2 3 10 4 lspsnel5
 |-  ( ph -> ( X e. ( N ` { Y } ) <-> ( N ` { X } ) C_ ( N ` { Y } ) ) )
12 7 11 syl5ibr
 |-  ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) -> X e. ( N ` { Y } ) ) )
13 12 necon3bd
 |-  ( ph -> ( -. X e. ( N ` { Y } ) -> ( N ` { X } ) =/= ( N ` { Y } ) ) )
14 6 13 mpd
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )