Metamath Proof Explorer


Theorem lspsnnecom

Description: Swap two vectors with different spans. (Contributed by NM, 20-May-2015)

Ref Expression
Hypotheses lspsnnecom.v
|- V = ( Base ` W )
lspsnnecom.o
|- .0. = ( 0g ` W )
lspsnnecom.n
|- N = ( LSpan ` W )
lspsnnecom.w
|- ( ph -> W e. LVec )
lspsnnecom.x
|- ( ph -> X e. V )
lspsnnecom.y
|- ( ph -> Y e. ( V \ { .0. } ) )
lspsnnecom.e
|- ( ph -> -. X e. ( N ` { Y } ) )
Assertion lspsnnecom
|- ( ph -> -. Y e. ( N ` { X } ) )

Proof

Step Hyp Ref Expression
1 lspsnnecom.v
 |-  V = ( Base ` W )
2 lspsnnecom.o
 |-  .0. = ( 0g ` W )
3 lspsnnecom.n
 |-  N = ( LSpan ` W )
4 lspsnnecom.w
 |-  ( ph -> W e. LVec )
5 lspsnnecom.x
 |-  ( ph -> X e. V )
6 lspsnnecom.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
7 lspsnnecom.e
 |-  ( ph -> -. X e. ( N ` { Y } ) )
8 lveclmod
 |-  ( W e. LVec -> W e. LMod )
9 4 8 syl
 |-  ( ph -> W e. LMod )
10 6 eldifad
 |-  ( ph -> Y e. V )
11 1 3 9 5 10 7 lspsnne2
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
12 11 necomd
 |-  ( ph -> ( N ` { Y } ) =/= ( N ` { X } ) )
13 1 2 3 4 6 5 12 lspsnne1
 |-  ( ph -> -. Y e. ( N ` { X } ) )