Description: Swap two vectors with different spans. (Contributed by NM, 20-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspsnnecom.v | |- V = ( Base ` W ) |
|
lspsnnecom.o | |- .0. = ( 0g ` W ) |
||
lspsnnecom.n | |- N = ( LSpan ` W ) |
||
lspsnnecom.w | |- ( ph -> W e. LVec ) |
||
lspsnnecom.x | |- ( ph -> X e. V ) |
||
lspsnnecom.y | |- ( ph -> Y e. ( V \ { .0. } ) ) |
||
lspsnnecom.e | |- ( ph -> -. X e. ( N ` { Y } ) ) |
||
Assertion | lspsnnecom | |- ( ph -> -. Y e. ( N ` { X } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnnecom.v | |- V = ( Base ` W ) |
|
2 | lspsnnecom.o | |- .0. = ( 0g ` W ) |
|
3 | lspsnnecom.n | |- N = ( LSpan ` W ) |
|
4 | lspsnnecom.w | |- ( ph -> W e. LVec ) |
|
5 | lspsnnecom.x | |- ( ph -> X e. V ) |
|
6 | lspsnnecom.y | |- ( ph -> Y e. ( V \ { .0. } ) ) |
|
7 | lspsnnecom.e | |- ( ph -> -. X e. ( N ` { Y } ) ) |
|
8 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
9 | 4 8 | syl | |- ( ph -> W e. LMod ) |
10 | 6 | eldifad | |- ( ph -> Y e. V ) |
11 | 1 3 9 5 10 7 | lspsnne2 | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
12 | 11 | necomd | |- ( ph -> ( N ` { Y } ) =/= ( N ` { X } ) ) |
13 | 1 2 3 4 6 5 12 | lspsnne1 | |- ( ph -> -. Y e. ( N ` { X } ) ) |