| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsnnecom.v |
|- V = ( Base ` W ) |
| 2 |
|
lspsnnecom.o |
|- .0. = ( 0g ` W ) |
| 3 |
|
lspsnnecom.n |
|- N = ( LSpan ` W ) |
| 4 |
|
lspsnnecom.w |
|- ( ph -> W e. LVec ) |
| 5 |
|
lspsnnecom.x |
|- ( ph -> X e. V ) |
| 6 |
|
lspsnnecom.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
| 7 |
|
lspsnnecom.e |
|- ( ph -> -. X e. ( N ` { Y } ) ) |
| 8 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 9 |
4 8
|
syl |
|- ( ph -> W e. LMod ) |
| 10 |
6
|
eldifad |
|- ( ph -> Y e. V ) |
| 11 |
1 3 9 5 10 7
|
lspsnne2 |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 12 |
11
|
necomd |
|- ( ph -> ( N ` { Y } ) =/= ( N ` { X } ) ) |
| 13 |
1 2 3 4 6 5 12
|
lspsnne1 |
|- ( ph -> -. Y e. ( N ` { X } ) ) |