Step |
Hyp |
Ref |
Expression |
1 |
|
lspsnss2.v |
|- V = ( Base ` W ) |
2 |
|
lspsnss2.s |
|- S = ( Scalar ` W ) |
3 |
|
lspsnss2.k |
|- K = ( Base ` S ) |
4 |
|
lspsnss2.t |
|- .x. = ( .s ` W ) |
5 |
|
lspsnss2.n |
|- N = ( LSpan ` W ) |
6 |
|
lspsnss2.w |
|- ( ph -> W e. LMod ) |
7 |
|
lspsnss2.x |
|- ( ph -> X e. V ) |
8 |
|
lspsnss2.y |
|- ( ph -> Y e. V ) |
9 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
10 |
1 9 5
|
lspsncl |
|- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
11 |
6 8 10
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
12 |
1 9 5 6 11 7
|
lspsnel5 |
|- ( ph -> ( X e. ( N ` { Y } ) <-> ( N ` { X } ) C_ ( N ` { Y } ) ) ) |
13 |
2 3 1 4 5
|
lspsnel |
|- ( ( W e. LMod /\ Y e. V ) -> ( X e. ( N ` { Y } ) <-> E. k e. K X = ( k .x. Y ) ) ) |
14 |
6 8 13
|
syl2anc |
|- ( ph -> ( X e. ( N ` { Y } ) <-> E. k e. K X = ( k .x. Y ) ) ) |
15 |
12 14
|
bitr3d |
|- ( ph -> ( ( N ` { X } ) C_ ( N ` { Y } ) <-> E. k e. K X = ( k .x. Y ) ) ) |