| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspsnsub.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | lspsnsub.s |  |-  .- = ( -g ` W ) | 
						
							| 3 |  | lspsnsub.n |  |-  N = ( LSpan ` W ) | 
						
							| 4 |  | lspsnsub.w |  |-  ( ph -> W e. LMod ) | 
						
							| 5 |  | lspsnsub.x |  |-  ( ph -> X e. V ) | 
						
							| 6 |  | lspsnsub.y |  |-  ( ph -> Y e. V ) | 
						
							| 7 | 1 2 | lmodvsubcl |  |-  ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X .- Y ) e. V ) | 
						
							| 8 | 4 5 6 7 | syl3anc |  |-  ( ph -> ( X .- Y ) e. V ) | 
						
							| 9 |  | eqid |  |-  ( invg ` W ) = ( invg ` W ) | 
						
							| 10 | 1 9 3 | lspsnneg |  |-  ( ( W e. LMod /\ ( X .- Y ) e. V ) -> ( N ` { ( ( invg ` W ) ` ( X .- Y ) ) } ) = ( N ` { ( X .- Y ) } ) ) | 
						
							| 11 | 4 8 10 | syl2anc |  |-  ( ph -> ( N ` { ( ( invg ` W ) ` ( X .- Y ) ) } ) = ( N ` { ( X .- Y ) } ) ) | 
						
							| 12 |  | lmodgrp |  |-  ( W e. LMod -> W e. Grp ) | 
						
							| 13 | 4 12 | syl |  |-  ( ph -> W e. Grp ) | 
						
							| 14 | 1 2 9 | grpinvsub |  |-  ( ( W e. Grp /\ X e. V /\ Y e. V ) -> ( ( invg ` W ) ` ( X .- Y ) ) = ( Y .- X ) ) | 
						
							| 15 | 13 5 6 14 | syl3anc |  |-  ( ph -> ( ( invg ` W ) ` ( X .- Y ) ) = ( Y .- X ) ) | 
						
							| 16 | 15 | sneqd |  |-  ( ph -> { ( ( invg ` W ) ` ( X .- Y ) ) } = { ( Y .- X ) } ) | 
						
							| 17 | 16 | fveq2d |  |-  ( ph -> ( N ` { ( ( invg ` W ) ` ( X .- Y ) ) } ) = ( N ` { ( Y .- X ) } ) ) | 
						
							| 18 | 11 17 | eqtr3d |  |-  ( ph -> ( N ` { ( X .- Y ) } ) = ( N ` { ( Y .- X ) } ) ) |