Step |
Hyp |
Ref |
Expression |
1 |
|
lspsnsub.v |
|- V = ( Base ` W ) |
2 |
|
lspsnsub.s |
|- .- = ( -g ` W ) |
3 |
|
lspsnsub.n |
|- N = ( LSpan ` W ) |
4 |
|
lspsnsub.w |
|- ( ph -> W e. LMod ) |
5 |
|
lspsnsub.x |
|- ( ph -> X e. V ) |
6 |
|
lspsnsub.y |
|- ( ph -> Y e. V ) |
7 |
1 2
|
lmodvsubcl |
|- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X .- Y ) e. V ) |
8 |
4 5 6 7
|
syl3anc |
|- ( ph -> ( X .- Y ) e. V ) |
9 |
|
eqid |
|- ( invg ` W ) = ( invg ` W ) |
10 |
1 9 3
|
lspsnneg |
|- ( ( W e. LMod /\ ( X .- Y ) e. V ) -> ( N ` { ( ( invg ` W ) ` ( X .- Y ) ) } ) = ( N ` { ( X .- Y ) } ) ) |
11 |
4 8 10
|
syl2anc |
|- ( ph -> ( N ` { ( ( invg ` W ) ` ( X .- Y ) ) } ) = ( N ` { ( X .- Y ) } ) ) |
12 |
|
lmodgrp |
|- ( W e. LMod -> W e. Grp ) |
13 |
4 12
|
syl |
|- ( ph -> W e. Grp ) |
14 |
1 2 9
|
grpinvsub |
|- ( ( W e. Grp /\ X e. V /\ Y e. V ) -> ( ( invg ` W ) ` ( X .- Y ) ) = ( Y .- X ) ) |
15 |
13 5 6 14
|
syl3anc |
|- ( ph -> ( ( invg ` W ) ` ( X .- Y ) ) = ( Y .- X ) ) |
16 |
15
|
sneqd |
|- ( ph -> { ( ( invg ` W ) ` ( X .- Y ) ) } = { ( Y .- X ) } ) |
17 |
16
|
fveq2d |
|- ( ph -> ( N ` { ( ( invg ` W ) ` ( X .- Y ) ) } ) = ( N ` { ( Y .- X ) } ) ) |
18 |
11 17
|
eqtr3d |
|- ( ph -> ( N ` { ( X .- Y ) } ) = ( N ` { ( Y .- X ) } ) ) |