Description: The span of a singleton is an additive subgroup (frequently used special case of lspcl ). (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnsubg.v | |- V = ( Base ` W ) | |
| lspsnsubg.n | |- N = ( LSpan ` W ) | ||
| Assertion | lspsnsubg | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( SubGrp ` W ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lspsnsubg.v | |- V = ( Base ` W ) | |
| 2 | lspsnsubg.n | |- N = ( LSpan ` W ) | |
| 3 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) | |
| 4 | 1 3 2 | lspsncl |  |-  ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) | 
| 5 | 3 | lsssubg |  |-  ( ( W e. LMod /\ ( N ` { X } ) e. ( LSubSp ` W ) ) -> ( N ` { X } ) e. ( SubGrp ` W ) ) | 
| 6 | 4 5 | syldan |  |-  ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( SubGrp ` W ) ) |