| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsnsubn0.v |
|- V = ( Base ` W ) |
| 2 |
|
lspsnsubn0.o |
|- .0. = ( 0g ` W ) |
| 3 |
|
lspsnsubn0.m |
|- .- = ( -g ` W ) |
| 4 |
|
lspsnsubn0.w |
|- ( ph -> W e. LMod ) |
| 5 |
|
lspsnsubn0.x |
|- ( ph -> X e. V ) |
| 6 |
|
lspsnsubn0.y |
|- ( ph -> Y e. V ) |
| 7 |
|
lspsnsubn0.e |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 8 |
1 2 3
|
lmodsubeq0 |
|- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( ( X .- Y ) = .0. <-> X = Y ) ) |
| 9 |
4 5 6 8
|
syl3anc |
|- ( ph -> ( ( X .- Y ) = .0. <-> X = Y ) ) |
| 10 |
|
sneq |
|- ( X = Y -> { X } = { Y } ) |
| 11 |
10
|
fveq2d |
|- ( X = Y -> ( N ` { X } ) = ( N ` { Y } ) ) |
| 12 |
9 11
|
biimtrdi |
|- ( ph -> ( ( X .- Y ) = .0. -> ( N ` { X } ) = ( N ` { Y } ) ) ) |
| 13 |
12
|
necon3d |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) -> ( X .- Y ) =/= .0. ) ) |
| 14 |
7 13
|
mpd |
|- ( ph -> ( X .- Y ) =/= .0. ) |