| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsnvs.v |
|- V = ( Base ` W ) |
| 2 |
|
lspsnvs.f |
|- F = ( Scalar ` W ) |
| 3 |
|
lspsnvs.t |
|- .x. = ( .s ` W ) |
| 4 |
|
lspsnvs.k |
|- K = ( Base ` F ) |
| 5 |
|
lspsnvs.o |
|- .0. = ( 0g ` F ) |
| 6 |
|
lspsnvs.n |
|- N = ( LSpan ` W ) |
| 7 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 8 |
7
|
3ad2ant1 |
|- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> W e. LMod ) |
| 9 |
|
simp2l |
|- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> R e. K ) |
| 10 |
|
simp3 |
|- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> X e. V ) |
| 11 |
2 4 1 3 6
|
lspsnvsi |
|- ( ( W e. LMod /\ R e. K /\ X e. V ) -> ( N ` { ( R .x. X ) } ) C_ ( N ` { X } ) ) |
| 12 |
8 9 10 11
|
syl3anc |
|- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( N ` { ( R .x. X ) } ) C_ ( N ` { X } ) ) |
| 13 |
2
|
lvecdrng |
|- ( W e. LVec -> F e. DivRing ) |
| 14 |
13
|
3ad2ant1 |
|- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> F e. DivRing ) |
| 15 |
|
simp2r |
|- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> R =/= .0. ) |
| 16 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
| 17 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
| 18 |
|
eqid |
|- ( invr ` F ) = ( invr ` F ) |
| 19 |
4 5 16 17 18
|
drnginvrl |
|- ( ( F e. DivRing /\ R e. K /\ R =/= .0. ) -> ( ( ( invr ` F ) ` R ) ( .r ` F ) R ) = ( 1r ` F ) ) |
| 20 |
14 9 15 19
|
syl3anc |
|- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( ( ( invr ` F ) ` R ) ( .r ` F ) R ) = ( 1r ` F ) ) |
| 21 |
20
|
oveq1d |
|- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( ( ( ( invr ` F ) ` R ) ( .r ` F ) R ) .x. X ) = ( ( 1r ` F ) .x. X ) ) |
| 22 |
4 5 18
|
drnginvrcl |
|- ( ( F e. DivRing /\ R e. K /\ R =/= .0. ) -> ( ( invr ` F ) ` R ) e. K ) |
| 23 |
14 9 15 22
|
syl3anc |
|- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( ( invr ` F ) ` R ) e. K ) |
| 24 |
1 2 3 4 16
|
lmodvsass |
|- ( ( W e. LMod /\ ( ( ( invr ` F ) ` R ) e. K /\ R e. K /\ X e. V ) ) -> ( ( ( ( invr ` F ) ` R ) ( .r ` F ) R ) .x. X ) = ( ( ( invr ` F ) ` R ) .x. ( R .x. X ) ) ) |
| 25 |
8 23 9 10 24
|
syl13anc |
|- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( ( ( ( invr ` F ) ` R ) ( .r ` F ) R ) .x. X ) = ( ( ( invr ` F ) ` R ) .x. ( R .x. X ) ) ) |
| 26 |
1 2 3 17
|
lmodvs1 |
|- ( ( W e. LMod /\ X e. V ) -> ( ( 1r ` F ) .x. X ) = X ) |
| 27 |
8 10 26
|
syl2anc |
|- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( ( 1r ` F ) .x. X ) = X ) |
| 28 |
21 25 27
|
3eqtr3d |
|- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( ( ( invr ` F ) ` R ) .x. ( R .x. X ) ) = X ) |
| 29 |
28
|
sneqd |
|- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> { ( ( ( invr ` F ) ` R ) .x. ( R .x. X ) ) } = { X } ) |
| 30 |
29
|
fveq2d |
|- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( N ` { ( ( ( invr ` F ) ` R ) .x. ( R .x. X ) ) } ) = ( N ` { X } ) ) |
| 31 |
1 2 3 4
|
lmodvscl |
|- ( ( W e. LMod /\ R e. K /\ X e. V ) -> ( R .x. X ) e. V ) |
| 32 |
8 9 10 31
|
syl3anc |
|- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( R .x. X ) e. V ) |
| 33 |
2 4 1 3 6
|
lspsnvsi |
|- ( ( W e. LMod /\ ( ( invr ` F ) ` R ) e. K /\ ( R .x. X ) e. V ) -> ( N ` { ( ( ( invr ` F ) ` R ) .x. ( R .x. X ) ) } ) C_ ( N ` { ( R .x. X ) } ) ) |
| 34 |
8 23 32 33
|
syl3anc |
|- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( N ` { ( ( ( invr ` F ) ` R ) .x. ( R .x. X ) ) } ) C_ ( N ` { ( R .x. X ) } ) ) |
| 35 |
30 34
|
eqsstrrd |
|- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( N ` { X } ) C_ ( N ` { ( R .x. X ) } ) ) |
| 36 |
12 35
|
eqssd |
|- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( N ` { ( R .x. X ) } ) = ( N ` { X } ) ) |