Step |
Hyp |
Ref |
Expression |
1 |
|
lspsn.f |
|- F = ( Scalar ` W ) |
2 |
|
lspsn.k |
|- K = ( Base ` F ) |
3 |
|
lspsn.v |
|- V = ( Base ` W ) |
4 |
|
lspsn.t |
|- .x. = ( .s ` W ) |
5 |
|
lspsn.n |
|- N = ( LSpan ` W ) |
6 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
7 |
|
simp1 |
|- ( ( W e. LMod /\ R e. K /\ X e. V ) -> W e. LMod ) |
8 |
|
simp3 |
|- ( ( W e. LMod /\ R e. K /\ X e. V ) -> X e. V ) |
9 |
8
|
snssd |
|- ( ( W e. LMod /\ R e. K /\ X e. V ) -> { X } C_ V ) |
10 |
3 6 5
|
lspcl |
|- ( ( W e. LMod /\ { X } C_ V ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
11 |
7 9 10
|
syl2anc |
|- ( ( W e. LMod /\ R e. K /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
12 |
|
simp2 |
|- ( ( W e. LMod /\ R e. K /\ X e. V ) -> R e. K ) |
13 |
3 4 1 2 5 7 12 8
|
lspsneli |
|- ( ( W e. LMod /\ R e. K /\ X e. V ) -> ( R .x. X ) e. ( N ` { X } ) ) |
14 |
6 5 7 11 13
|
lspsnel5a |
|- ( ( W e. LMod /\ R e. K /\ X e. V ) -> ( N ` { ( R .x. X ) } ) C_ ( N ` { X } ) ) |