Description: A set of vectors is a subset of its span. ( spanss2 analog.) (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspss.v | |- V = ( Base ` W ) |
|
| lspss.n | |- N = ( LSpan ` W ) |
||
| Assertion | lspssid | |- ( ( W e. LMod /\ U C_ V ) -> U C_ ( N ` U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspss.v | |- V = ( Base ` W ) |
|
| 2 | lspss.n | |- N = ( LSpan ` W ) |
|
| 3 | ssintub | |- U C_ |^| { t e. ( LSubSp ` W ) | U C_ t } |
|
| 4 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 5 | 1 4 2 | lspval | |- ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) = |^| { t e. ( LSubSp ` W ) | U C_ t } ) |
| 6 | 3 5 | sseqtrrid | |- ( ( W e. LMod /\ U C_ V ) -> U C_ ( N ` U ) ) |