| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspssp.s |  |-  S = ( LSubSp ` W ) | 
						
							| 2 |  | lspssp.n |  |-  N = ( LSpan ` W ) | 
						
							| 3 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 4 | 3 1 | lssss |  |-  ( U e. S -> U C_ ( Base ` W ) ) | 
						
							| 5 | 3 2 | lspss |  |-  ( ( W e. LMod /\ U C_ ( Base ` W ) /\ T C_ U ) -> ( N ` T ) C_ ( N ` U ) ) | 
						
							| 6 | 4 5 | syl3an2 |  |-  ( ( W e. LMod /\ U e. S /\ T C_ U ) -> ( N ` T ) C_ ( N ` U ) ) | 
						
							| 7 | 1 2 | lspid |  |-  ( ( W e. LMod /\ U e. S ) -> ( N ` U ) = U ) | 
						
							| 8 | 7 | 3adant3 |  |-  ( ( W e. LMod /\ U e. S /\ T C_ U ) -> ( N ` U ) = U ) | 
						
							| 9 | 6 8 | sseqtrd |  |-  ( ( W e. LMod /\ U e. S /\ T C_ U ) -> ( N ` T ) C_ U ) |