Metamath Proof Explorer


Theorem lspssp

Description: If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014)

Ref Expression
Hypotheses lspssp.s
|- S = ( LSubSp ` W )
lspssp.n
|- N = ( LSpan ` W )
Assertion lspssp
|- ( ( W e. LMod /\ U e. S /\ T C_ U ) -> ( N ` T ) C_ U )

Proof

Step Hyp Ref Expression
1 lspssp.s
 |-  S = ( LSubSp ` W )
2 lspssp.n
 |-  N = ( LSpan ` W )
3 eqid
 |-  ( Base ` W ) = ( Base ` W )
4 3 1 lssss
 |-  ( U e. S -> U C_ ( Base ` W ) )
5 3 2 lspss
 |-  ( ( W e. LMod /\ U C_ ( Base ` W ) /\ T C_ U ) -> ( N ` T ) C_ ( N ` U ) )
6 4 5 syl3an2
 |-  ( ( W e. LMod /\ U e. S /\ T C_ U ) -> ( N ` T ) C_ ( N ` U ) )
7 1 2 lspid
 |-  ( ( W e. LMod /\ U e. S ) -> ( N ` U ) = U )
8 7 3adant3
 |-  ( ( W e. LMod /\ U e. S /\ T C_ U ) -> ( N ` U ) = U )
9 6 8 sseqtrd
 |-  ( ( W e. LMod /\ U e. S /\ T C_ U ) -> ( N ` T ) C_ U )