Step |
Hyp |
Ref |
Expression |
1 |
|
lspssp.s |
|- S = ( LSubSp ` W ) |
2 |
|
lspssp.n |
|- N = ( LSpan ` W ) |
3 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
4 |
3 1
|
lssss |
|- ( U e. S -> U C_ ( Base ` W ) ) |
5 |
3 2
|
lspss |
|- ( ( W e. LMod /\ U C_ ( Base ` W ) /\ T C_ U ) -> ( N ` T ) C_ ( N ` U ) ) |
6 |
4 5
|
syl3an2 |
|- ( ( W e. LMod /\ U e. S /\ T C_ U ) -> ( N ` T ) C_ ( N ` U ) ) |
7 |
1 2
|
lspid |
|- ( ( W e. LMod /\ U e. S ) -> ( N ` U ) = U ) |
8 |
7
|
3adant3 |
|- ( ( W e. LMod /\ U e. S /\ T C_ U ) -> ( N ` U ) = U ) |
9 |
6 8
|
sseqtrd |
|- ( ( W e. LMod /\ U e. S /\ T C_ U ) -> ( N ` T ) C_ U ) |