| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspval.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | lspval.s |  |-  S = ( LSubSp ` W ) | 
						
							| 3 |  | lspval.n |  |-  N = ( LSpan ` W ) | 
						
							| 4 |  | lspprcl.w |  |-  ( ph -> W e. LMod ) | 
						
							| 5 |  | lspprcl.x |  |-  ( ph -> X e. V ) | 
						
							| 6 |  | lspprcl.y |  |-  ( ph -> Y e. V ) | 
						
							| 7 |  | lsptpcl.z |  |-  ( ph -> Z e. V ) | 
						
							| 8 |  | df-tp |  |-  { X , Y , Z } = ( { X , Y } u. { Z } ) | 
						
							| 9 | 5 6 | prssd |  |-  ( ph -> { X , Y } C_ V ) | 
						
							| 10 | 7 | snssd |  |-  ( ph -> { Z } C_ V ) | 
						
							| 11 | 9 10 | unssd |  |-  ( ph -> ( { X , Y } u. { Z } ) C_ V ) | 
						
							| 12 | 8 11 | eqsstrid |  |-  ( ph -> { X , Y , Z } C_ V ) | 
						
							| 13 | 1 2 3 | lspcl |  |-  ( ( W e. LMod /\ { X , Y , Z } C_ V ) -> ( N ` { X , Y , Z } ) e. S ) | 
						
							| 14 | 4 12 13 | syl2anc |  |-  ( ph -> ( N ` { X , Y , Z } ) e. S ) |