Description: The span of an unordered triple is a subspace (frequently used special case of lspcl ). (Contributed by NM, 22-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspval.v | |- V = ( Base ` W ) |
|
lspval.s | |- S = ( LSubSp ` W ) |
||
lspval.n | |- N = ( LSpan ` W ) |
||
lspprcl.w | |- ( ph -> W e. LMod ) |
||
lspprcl.x | |- ( ph -> X e. V ) |
||
lspprcl.y | |- ( ph -> Y e. V ) |
||
lsptpcl.z | |- ( ph -> Z e. V ) |
||
Assertion | lsptpcl | |- ( ph -> ( N ` { X , Y , Z } ) e. S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspval.v | |- V = ( Base ` W ) |
|
2 | lspval.s | |- S = ( LSubSp ` W ) |
|
3 | lspval.n | |- N = ( LSpan ` W ) |
|
4 | lspprcl.w | |- ( ph -> W e. LMod ) |
|
5 | lspprcl.x | |- ( ph -> X e. V ) |
|
6 | lspprcl.y | |- ( ph -> Y e. V ) |
|
7 | lsptpcl.z | |- ( ph -> Z e. V ) |
|
8 | df-tp | |- { X , Y , Z } = ( { X , Y } u. { Z } ) |
|
9 | 5 6 | prssd | |- ( ph -> { X , Y } C_ V ) |
10 | 7 | snssd | |- ( ph -> { Z } C_ V ) |
11 | 9 10 | unssd | |- ( ph -> ( { X , Y } u. { Z } ) C_ V ) |
12 | 8 11 | eqsstrid | |- ( ph -> { X , Y , Z } C_ V ) |
13 | 1 2 3 | lspcl | |- ( ( W e. LMod /\ { X , Y , Z } C_ V ) -> ( N ` { X , Y , Z } ) e. S ) |
14 | 4 12 13 | syl2anc | |- ( ph -> ( N ` { X , Y , Z } ) e. S ) |