Metamath Proof Explorer


Theorem lspuni0

Description: Union of the span of the empty set. (Contributed by NM, 14-Mar-2015)

Ref Expression
Hypotheses lspsn0.z
|- .0. = ( 0g ` W )
lspsn0.n
|- N = ( LSpan ` W )
Assertion lspuni0
|- ( W e. LMod -> U. ( N ` (/) ) = .0. )

Proof

Step Hyp Ref Expression
1 lspsn0.z
 |-  .0. = ( 0g ` W )
2 lspsn0.n
 |-  N = ( LSpan ` W )
3 1 2 lsp0
 |-  ( W e. LMod -> ( N ` (/) ) = { .0. } )
4 3 unieqd
 |-  ( W e. LMod -> U. ( N ` (/) ) = U. { .0. } )
5 1 fvexi
 |-  .0. e. _V
6 5 unisn
 |-  U. { .0. } = .0.
7 4 6 eqtrdi
 |-  ( W e. LMod -> U. ( N ` (/) ) = .0. )