| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspval.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | lspval.s |  |-  S = ( LSubSp ` W ) | 
						
							| 3 |  | lspval.n |  |-  N = ( LSpan ` W ) | 
						
							| 4 | 1 2 3 | lspfval |  |-  ( W e. LMod -> N = ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ) | 
						
							| 5 | 4 | fveq1d |  |-  ( W e. LMod -> ( N ` U ) = ( ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ` U ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) = ( ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ` U ) ) | 
						
							| 7 |  | eqid |  |-  ( s e. ~P V |-> |^| { t e. S | s C_ t } ) = ( s e. ~P V |-> |^| { t e. S | s C_ t } ) | 
						
							| 8 |  | sseq1 |  |-  ( s = U -> ( s C_ t <-> U C_ t ) ) | 
						
							| 9 | 8 | rabbidv |  |-  ( s = U -> { t e. S | s C_ t } = { t e. S | U C_ t } ) | 
						
							| 10 | 9 | inteqd |  |-  ( s = U -> |^| { t e. S | s C_ t } = |^| { t e. S | U C_ t } ) | 
						
							| 11 |  | simpr |  |-  ( ( W e. LMod /\ U C_ V ) -> U C_ V ) | 
						
							| 12 | 1 | fvexi |  |-  V e. _V | 
						
							| 13 | 12 | elpw2 |  |-  ( U e. ~P V <-> U C_ V ) | 
						
							| 14 | 11 13 | sylibr |  |-  ( ( W e. LMod /\ U C_ V ) -> U e. ~P V ) | 
						
							| 15 | 1 2 | lss1 |  |-  ( W e. LMod -> V e. S ) | 
						
							| 16 |  | sseq2 |  |-  ( t = V -> ( U C_ t <-> U C_ V ) ) | 
						
							| 17 | 16 | rspcev |  |-  ( ( V e. S /\ U C_ V ) -> E. t e. S U C_ t ) | 
						
							| 18 | 15 17 | sylan |  |-  ( ( W e. LMod /\ U C_ V ) -> E. t e. S U C_ t ) | 
						
							| 19 |  | intexrab |  |-  ( E. t e. S U C_ t <-> |^| { t e. S | U C_ t } e. _V ) | 
						
							| 20 | 18 19 | sylib |  |-  ( ( W e. LMod /\ U C_ V ) -> |^| { t e. S | U C_ t } e. _V ) | 
						
							| 21 | 7 10 14 20 | fvmptd3 |  |-  ( ( W e. LMod /\ U C_ V ) -> ( ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ` U ) = |^| { t e. S | U C_ t } ) | 
						
							| 22 | 6 21 | eqtrd |  |-  ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) = |^| { t e. S | U C_ t } ) |