| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lss0cl.z |
|- .0. = ( 0g ` W ) |
| 2 |
|
lss0cl.s |
|- S = ( LSubSp ` W ) |
| 3 |
2
|
lssn0 |
|- ( U e. S -> U =/= (/) ) |
| 4 |
|
n0 |
|- ( U =/= (/) <-> E. x x e. U ) |
| 5 |
3 4
|
sylib |
|- ( U e. S -> E. x x e. U ) |
| 6 |
5
|
adantl |
|- ( ( W e. LMod /\ U e. S ) -> E. x x e. U ) |
| 7 |
|
simp1 |
|- ( ( W e. LMod /\ U e. S /\ x e. U ) -> W e. LMod ) |
| 8 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 9 |
8 2
|
lssel |
|- ( ( U e. S /\ x e. U ) -> x e. ( Base ` W ) ) |
| 10 |
9
|
3adant1 |
|- ( ( W e. LMod /\ U e. S /\ x e. U ) -> x e. ( Base ` W ) ) |
| 11 |
|
eqid |
|- ( -g ` W ) = ( -g ` W ) |
| 12 |
8 1 11
|
lmodsubid |
|- ( ( W e. LMod /\ x e. ( Base ` W ) ) -> ( x ( -g ` W ) x ) = .0. ) |
| 13 |
7 10 12
|
syl2anc |
|- ( ( W e. LMod /\ U e. S /\ x e. U ) -> ( x ( -g ` W ) x ) = .0. ) |
| 14 |
11 2
|
lssvsubcl |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. U /\ x e. U ) ) -> ( x ( -g ` W ) x ) e. U ) |
| 15 |
14
|
anabsan2 |
|- ( ( ( W e. LMod /\ U e. S ) /\ x e. U ) -> ( x ( -g ` W ) x ) e. U ) |
| 16 |
15
|
3impa |
|- ( ( W e. LMod /\ U e. S /\ x e. U ) -> ( x ( -g ` W ) x ) e. U ) |
| 17 |
13 16
|
eqeltrrd |
|- ( ( W e. LMod /\ U e. S /\ x e. U ) -> .0. e. U ) |
| 18 |
17
|
3expia |
|- ( ( W e. LMod /\ U e. S ) -> ( x e. U -> .0. e. U ) ) |
| 19 |
18
|
exlimdv |
|- ( ( W e. LMod /\ U e. S ) -> ( E. x x e. U -> .0. e. U ) ) |
| 20 |
6 19
|
mpd |
|- ( ( W e. LMod /\ U e. S ) -> .0. e. U ) |