| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssbn.x |
|- X = ( W |`s U ) |
| 2 |
|
lssbn.s |
|- S = ( LSubSp ` W ) |
| 3 |
|
lssbn.j |
|- J = ( TopOpen ` W ) |
| 4 |
|
bnnvc |
|- ( W e. Ban -> W e. NrmVec ) |
| 5 |
1 2
|
lssnvc |
|- ( ( W e. NrmVec /\ U e. S ) -> X e. NrmVec ) |
| 6 |
4 5
|
sylan |
|- ( ( W e. Ban /\ U e. S ) -> X e. NrmVec ) |
| 7 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 8 |
1 7
|
resssca |
|- ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 9 |
8
|
adantl |
|- ( ( W e. Ban /\ U e. S ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 10 |
7
|
bnsca |
|- ( W e. Ban -> ( Scalar ` W ) e. CMetSp ) |
| 11 |
10
|
adantr |
|- ( ( W e. Ban /\ U e. S ) -> ( Scalar ` W ) e. CMetSp ) |
| 12 |
9 11
|
eqeltrrd |
|- ( ( W e. Ban /\ U e. S ) -> ( Scalar ` X ) e. CMetSp ) |
| 13 |
|
eqid |
|- ( Scalar ` X ) = ( Scalar ` X ) |
| 14 |
13
|
isbn |
|- ( X e. Ban <-> ( X e. NrmVec /\ X e. CMetSp /\ ( Scalar ` X ) e. CMetSp ) ) |
| 15 |
|
3anan32 |
|- ( ( X e. NrmVec /\ X e. CMetSp /\ ( Scalar ` X ) e. CMetSp ) <-> ( ( X e. NrmVec /\ ( Scalar ` X ) e. CMetSp ) /\ X e. CMetSp ) ) |
| 16 |
14 15
|
bitri |
|- ( X e. Ban <-> ( ( X e. NrmVec /\ ( Scalar ` X ) e. CMetSp ) /\ X e. CMetSp ) ) |
| 17 |
16
|
baib |
|- ( ( X e. NrmVec /\ ( Scalar ` X ) e. CMetSp ) -> ( X e. Ban <-> X e. CMetSp ) ) |
| 18 |
6 12 17
|
syl2anc |
|- ( ( W e. Ban /\ U e. S ) -> ( X e. Ban <-> X e. CMetSp ) ) |
| 19 |
|
bncms |
|- ( W e. Ban -> W e. CMetSp ) |
| 20 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 21 |
20 2
|
lssss |
|- ( U e. S -> U C_ ( Base ` W ) ) |
| 22 |
1 20 3
|
cmsss |
|- ( ( W e. CMetSp /\ U C_ ( Base ` W ) ) -> ( X e. CMetSp <-> U e. ( Clsd ` J ) ) ) |
| 23 |
19 21 22
|
syl2an |
|- ( ( W e. Ban /\ U e. S ) -> ( X e. CMetSp <-> U e. ( Clsd ` J ) ) ) |
| 24 |
18 23
|
bitrd |
|- ( ( W e. Ban /\ U e. S ) -> ( X e. Ban <-> U e. ( Clsd ` J ) ) ) |