Metamath Proof Explorer


Theorem lssel

Description: A subspace member is a vector. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypotheses lssss.v
|- V = ( Base ` W )
lssss.s
|- S = ( LSubSp ` W )
Assertion lssel
|- ( ( U e. S /\ X e. U ) -> X e. V )

Proof

Step Hyp Ref Expression
1 lssss.v
 |-  V = ( Base ` W )
2 lssss.s
 |-  S = ( LSubSp ` W )
3 1 2 lssss
 |-  ( U e. S -> U C_ V )
4 3 sselda
 |-  ( ( U e. S /\ X e. U ) -> X e. V )