Description: A subspace member is a vector. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 8-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lssss.v | |- V = ( Base ` W ) |
|
lssss.s | |- S = ( LSubSp ` W ) |
||
Assertion | lssel | |- ( ( U e. S /\ X e. U ) -> X e. V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssss.v | |- V = ( Base ` W ) |
|
2 | lssss.s | |- S = ( LSubSp ` W ) |
|
3 | 1 2 | lssss | |- ( U e. S -> U C_ V ) |
4 | 3 | sselda | |- ( ( U e. S /\ X e. U ) -> X e. V ) |