| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lssintcl.s |  |-  S = ( LSubSp ` W ) | 
						
							| 2 |  | eqidd |  |-  ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> ( Scalar ` W ) = ( Scalar ` W ) ) | 
						
							| 3 |  | eqidd |  |-  ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) ) | 
						
							| 4 |  | eqidd |  |-  ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> ( Base ` W ) = ( Base ` W ) ) | 
						
							| 5 |  | eqidd |  |-  ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> ( +g ` W ) = ( +g ` W ) ) | 
						
							| 6 |  | eqidd |  |-  ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> ( .s ` W ) = ( .s ` W ) ) | 
						
							| 7 | 1 | a1i |  |-  ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> S = ( LSubSp ` W ) ) | 
						
							| 8 |  | intssuni2 |  |-  ( ( A C_ S /\ A =/= (/) ) -> |^| A C_ U. S ) | 
						
							| 9 | 8 | 3adant1 |  |-  ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> |^| A C_ U. S ) | 
						
							| 10 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 11 | 10 1 | lssss |  |-  ( y e. S -> y C_ ( Base ` W ) ) | 
						
							| 12 |  | velpw |  |-  ( y e. ~P ( Base ` W ) <-> y C_ ( Base ` W ) ) | 
						
							| 13 | 11 12 | sylibr |  |-  ( y e. S -> y e. ~P ( Base ` W ) ) | 
						
							| 14 | 13 | ssriv |  |-  S C_ ~P ( Base ` W ) | 
						
							| 15 |  | sspwuni |  |-  ( S C_ ~P ( Base ` W ) <-> U. S C_ ( Base ` W ) ) | 
						
							| 16 | 14 15 | mpbi |  |-  U. S C_ ( Base ` W ) | 
						
							| 17 | 9 16 | sstrdi |  |-  ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> |^| A C_ ( Base ` W ) ) | 
						
							| 18 |  | simpl1 |  |-  ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ y e. A ) -> W e. LMod ) | 
						
							| 19 |  | simp2 |  |-  ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> A C_ S ) | 
						
							| 20 | 19 | sselda |  |-  ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ y e. A ) -> y e. S ) | 
						
							| 21 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 22 | 21 1 | lss0cl |  |-  ( ( W e. LMod /\ y e. S ) -> ( 0g ` W ) e. y ) | 
						
							| 23 | 18 20 22 | syl2anc |  |-  ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ y e. A ) -> ( 0g ` W ) e. y ) | 
						
							| 24 | 23 | ralrimiva |  |-  ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> A. y e. A ( 0g ` W ) e. y ) | 
						
							| 25 |  | fvex |  |-  ( 0g ` W ) e. _V | 
						
							| 26 | 25 | elint2 |  |-  ( ( 0g ` W ) e. |^| A <-> A. y e. A ( 0g ` W ) e. y ) | 
						
							| 27 | 24 26 | sylibr |  |-  ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> ( 0g ` W ) e. |^| A ) | 
						
							| 28 | 27 | ne0d |  |-  ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> |^| A =/= (/) ) | 
						
							| 29 | 20 | adantlr |  |-  ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> y e. S ) | 
						
							| 30 |  | simplr1 |  |-  ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> x e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 31 |  | simplr2 |  |-  ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> a e. |^| A ) | 
						
							| 32 |  | simpr |  |-  ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> y e. A ) | 
						
							| 33 |  | elinti |  |-  ( a e. |^| A -> ( y e. A -> a e. y ) ) | 
						
							| 34 | 31 32 33 | sylc |  |-  ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> a e. y ) | 
						
							| 35 |  | simplr3 |  |-  ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> b e. |^| A ) | 
						
							| 36 |  | elinti |  |-  ( b e. |^| A -> ( y e. A -> b e. y ) ) | 
						
							| 37 | 35 32 36 | sylc |  |-  ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> b e. y ) | 
						
							| 38 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 39 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 40 |  | eqid |  |-  ( +g ` W ) = ( +g ` W ) | 
						
							| 41 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 42 | 38 39 40 41 1 | lsscl |  |-  ( ( y e. S /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. y /\ b e. y ) ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. y ) | 
						
							| 43 | 29 30 34 37 42 | syl13anc |  |-  ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. y ) | 
						
							| 44 | 43 | ralrimiva |  |-  ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) -> A. y e. A ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. y ) | 
						
							| 45 |  | ovex |  |-  ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. _V | 
						
							| 46 | 45 | elint2 |  |-  ( ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. |^| A <-> A. y e. A ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. y ) | 
						
							| 47 | 44 46 | sylibr |  |-  ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. |^| A ) | 
						
							| 48 | 2 3 4 5 6 7 17 28 47 | islssd |  |-  ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> |^| A e. S ) |