Description: No subspace is smaller than the zero subspace. ( shle0 analog.) (Contributed by NM, 20-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lss0cl.z | |- .0. = ( 0g ` W ) | |
| lss0cl.s | |- S = ( LSubSp ` W ) | ||
| Assertion | lssle0 | |- ( ( W e. LMod /\ X e. S ) -> ( X C_ { .0. } <-> X = { .0. } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lss0cl.z | |- .0. = ( 0g ` W ) | |
| 2 | lss0cl.s | |- S = ( LSubSp ` W ) | |
| 3 | 1 2 | lss0ss |  |-  ( ( W e. LMod /\ X e. S ) -> { .0. } C_ X ) | 
| 4 | 3 | biantrud |  |-  ( ( W e. LMod /\ X e. S ) -> ( X C_ { .0. } <-> ( X C_ { .0. } /\ { .0. } C_ X ) ) ) | 
| 5 | eqss |  |-  ( X = { .0. } <-> ( X C_ { .0. } /\ { .0. } C_ X ) ) | |
| 6 | 4 5 | bitr4di |  |-  ( ( W e. LMod /\ X e. S ) -> ( X C_ { .0. } <-> X = { .0. } ) ) |