Description: A submodule is a module. (Contributed by Stefan O'Rear, 12-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsslss.x | |- X = ( W |`s U ) |
|
lsslss.s | |- S = ( LSubSp ` W ) |
||
Assertion | lsslmod | |- ( ( W e. LMod /\ U e. S ) -> X e. LMod ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsslss.x | |- X = ( W |`s U ) |
|
2 | lsslss.s | |- S = ( LSubSp ` W ) |
|
3 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
4 | 1 3 2 | islss3 | |- ( W e. LMod -> ( U e. S <-> ( U C_ ( Base ` W ) /\ X e. LMod ) ) ) |
5 | 4 | simplbda | |- ( ( W e. LMod /\ U e. S ) -> X e. LMod ) |