Metamath Proof Explorer


Theorem lsslmod

Description: A submodule is a module. (Contributed by Stefan O'Rear, 12-Dec-2014)

Ref Expression
Hypotheses lsslss.x
|- X = ( W |`s U )
lsslss.s
|- S = ( LSubSp ` W )
Assertion lsslmod
|- ( ( W e. LMod /\ U e. S ) -> X e. LMod )

Proof

Step Hyp Ref Expression
1 lsslss.x
 |-  X = ( W |`s U )
2 lsslss.s
 |-  S = ( LSubSp ` W )
3 eqid
 |-  ( Base ` W ) = ( Base ` W )
4 1 3 2 islss3
 |-  ( W e. LMod -> ( U e. S <-> ( U C_ ( Base ` W ) /\ X e. LMod ) ) )
5 4 simplbda
 |-  ( ( W e. LMod /\ U e. S ) -> X e. LMod )