| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsslss.x |  |-  X = ( W |`s U ) | 
						
							| 2 |  | lsslss.s |  |-  S = ( LSubSp ` W ) | 
						
							| 3 |  | lsslss.t |  |-  T = ( LSubSp ` X ) | 
						
							| 4 | 1 2 | lsslmod |  |-  ( ( W e. LMod /\ U e. S ) -> X e. LMod ) | 
						
							| 5 |  | eqid |  |-  ( X |`s V ) = ( X |`s V ) | 
						
							| 6 |  | eqid |  |-  ( Base ` X ) = ( Base ` X ) | 
						
							| 7 | 5 6 3 | islss3 |  |-  ( X e. LMod -> ( V e. T <-> ( V C_ ( Base ` X ) /\ ( X |`s V ) e. LMod ) ) ) | 
						
							| 8 | 4 7 | syl |  |-  ( ( W e. LMod /\ U e. S ) -> ( V e. T <-> ( V C_ ( Base ` X ) /\ ( X |`s V ) e. LMod ) ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 10 | 9 2 | lssss |  |-  ( U e. S -> U C_ ( Base ` W ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( W e. LMod /\ U e. S ) -> U C_ ( Base ` W ) ) | 
						
							| 12 | 1 9 | ressbas2 |  |-  ( U C_ ( Base ` W ) -> U = ( Base ` X ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( W e. LMod /\ U e. S ) -> U = ( Base ` X ) ) | 
						
							| 14 | 13 | sseq2d |  |-  ( ( W e. LMod /\ U e. S ) -> ( V C_ U <-> V C_ ( Base ` X ) ) ) | 
						
							| 15 | 14 | anbi1d |  |-  ( ( W e. LMod /\ U e. S ) -> ( ( V C_ U /\ ( X |`s V ) e. LMod ) <-> ( V C_ ( Base ` X ) /\ ( X |`s V ) e. LMod ) ) ) | 
						
							| 16 |  | sstr2 |  |-  ( V C_ U -> ( U C_ ( Base ` W ) -> V C_ ( Base ` W ) ) ) | 
						
							| 17 | 11 16 | mpan9 |  |-  ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> V C_ ( Base ` W ) ) | 
						
							| 18 | 17 | biantrurd |  |-  ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> ( ( W |`s V ) e. LMod <-> ( V C_ ( Base ` W ) /\ ( W |`s V ) e. LMod ) ) ) | 
						
							| 19 | 1 | oveq1i |  |-  ( X |`s V ) = ( ( W |`s U ) |`s V ) | 
						
							| 20 |  | ressabs |  |-  ( ( U e. S /\ V C_ U ) -> ( ( W |`s U ) |`s V ) = ( W |`s V ) ) | 
						
							| 21 | 20 | adantll |  |-  ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> ( ( W |`s U ) |`s V ) = ( W |`s V ) ) | 
						
							| 22 | 19 21 | eqtrid |  |-  ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> ( X |`s V ) = ( W |`s V ) ) | 
						
							| 23 | 22 | eleq1d |  |-  ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> ( ( X |`s V ) e. LMod <-> ( W |`s V ) e. LMod ) ) | 
						
							| 24 |  | eqid |  |-  ( W |`s V ) = ( W |`s V ) | 
						
							| 25 | 24 9 2 | islss3 |  |-  ( W e. LMod -> ( V e. S <-> ( V C_ ( Base ` W ) /\ ( W |`s V ) e. LMod ) ) ) | 
						
							| 26 | 25 | ad2antrr |  |-  ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> ( V e. S <-> ( V C_ ( Base ` W ) /\ ( W |`s V ) e. LMod ) ) ) | 
						
							| 27 | 18 23 26 | 3bitr4d |  |-  ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> ( ( X |`s V ) e. LMod <-> V e. S ) ) | 
						
							| 28 | 27 | pm5.32da |  |-  ( ( W e. LMod /\ U e. S ) -> ( ( V C_ U /\ ( X |`s V ) e. LMod ) <-> ( V C_ U /\ V e. S ) ) ) | 
						
							| 29 | 28 | biancomd |  |-  ( ( W e. LMod /\ U e. S ) -> ( ( V C_ U /\ ( X |`s V ) e. LMod ) <-> ( V e. S /\ V C_ U ) ) ) | 
						
							| 30 | 8 15 29 | 3bitr2d |  |-  ( ( W e. LMod /\ U e. S ) -> ( V e. T <-> ( V e. S /\ V C_ U ) ) ) |