Step |
Hyp |
Ref |
Expression |
1 |
|
lsslss.x |
|- X = ( W |`s U ) |
2 |
|
lsslss.s |
|- S = ( LSubSp ` W ) |
3 |
|
lsslss.t |
|- T = ( LSubSp ` X ) |
4 |
1 2
|
lsslmod |
|- ( ( W e. LMod /\ U e. S ) -> X e. LMod ) |
5 |
|
eqid |
|- ( X |`s V ) = ( X |`s V ) |
6 |
|
eqid |
|- ( Base ` X ) = ( Base ` X ) |
7 |
5 6 3
|
islss3 |
|- ( X e. LMod -> ( V e. T <-> ( V C_ ( Base ` X ) /\ ( X |`s V ) e. LMod ) ) ) |
8 |
4 7
|
syl |
|- ( ( W e. LMod /\ U e. S ) -> ( V e. T <-> ( V C_ ( Base ` X ) /\ ( X |`s V ) e. LMod ) ) ) |
9 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
10 |
9 2
|
lssss |
|- ( U e. S -> U C_ ( Base ` W ) ) |
11 |
10
|
adantl |
|- ( ( W e. LMod /\ U e. S ) -> U C_ ( Base ` W ) ) |
12 |
1 9
|
ressbas2 |
|- ( U C_ ( Base ` W ) -> U = ( Base ` X ) ) |
13 |
11 12
|
syl |
|- ( ( W e. LMod /\ U e. S ) -> U = ( Base ` X ) ) |
14 |
13
|
sseq2d |
|- ( ( W e. LMod /\ U e. S ) -> ( V C_ U <-> V C_ ( Base ` X ) ) ) |
15 |
14
|
anbi1d |
|- ( ( W e. LMod /\ U e. S ) -> ( ( V C_ U /\ ( X |`s V ) e. LMod ) <-> ( V C_ ( Base ` X ) /\ ( X |`s V ) e. LMod ) ) ) |
16 |
|
sstr2 |
|- ( V C_ U -> ( U C_ ( Base ` W ) -> V C_ ( Base ` W ) ) ) |
17 |
11 16
|
mpan9 |
|- ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> V C_ ( Base ` W ) ) |
18 |
17
|
biantrurd |
|- ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> ( ( W |`s V ) e. LMod <-> ( V C_ ( Base ` W ) /\ ( W |`s V ) e. LMod ) ) ) |
19 |
1
|
oveq1i |
|- ( X |`s V ) = ( ( W |`s U ) |`s V ) |
20 |
|
ressabs |
|- ( ( U e. S /\ V C_ U ) -> ( ( W |`s U ) |`s V ) = ( W |`s V ) ) |
21 |
20
|
adantll |
|- ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> ( ( W |`s U ) |`s V ) = ( W |`s V ) ) |
22 |
19 21
|
eqtrid |
|- ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> ( X |`s V ) = ( W |`s V ) ) |
23 |
22
|
eleq1d |
|- ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> ( ( X |`s V ) e. LMod <-> ( W |`s V ) e. LMod ) ) |
24 |
|
eqid |
|- ( W |`s V ) = ( W |`s V ) |
25 |
24 9 2
|
islss3 |
|- ( W e. LMod -> ( V e. S <-> ( V C_ ( Base ` W ) /\ ( W |`s V ) e. LMod ) ) ) |
26 |
25
|
ad2antrr |
|- ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> ( V e. S <-> ( V C_ ( Base ` W ) /\ ( W |`s V ) e. LMod ) ) ) |
27 |
18 23 26
|
3bitr4d |
|- ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> ( ( X |`s V ) e. LMod <-> V e. S ) ) |
28 |
27
|
pm5.32da |
|- ( ( W e. LMod /\ U e. S ) -> ( ( V C_ U /\ ( X |`s V ) e. LMod ) <-> ( V C_ U /\ V e. S ) ) ) |
29 |
28
|
biancomd |
|- ( ( W e. LMod /\ U e. S ) -> ( ( V C_ U /\ ( X |`s V ) e. LMod ) <-> ( V e. S /\ V C_ U ) ) ) |
30 |
8 15 29
|
3bitr2d |
|- ( ( W e. LMod /\ U e. S ) -> ( V e. T <-> ( V e. S /\ V C_ U ) ) ) |