Metamath Proof Explorer


Theorem lsslvec

Description: A vector subspace is a vector space. (Contributed by NM, 14-Mar-2015)

Ref Expression
Hypotheses lsslvec.x
|- X = ( W |`s U )
lsslvec.s
|- S = ( LSubSp ` W )
Assertion lsslvec
|- ( ( W e. LVec /\ U e. S ) -> X e. LVec )

Proof

Step Hyp Ref Expression
1 lsslvec.x
 |-  X = ( W |`s U )
2 lsslvec.s
 |-  S = ( LSubSp ` W )
3 lveclmod
 |-  ( W e. LVec -> W e. LMod )
4 1 2 lsslmod
 |-  ( ( W e. LMod /\ U e. S ) -> X e. LMod )
5 3 4 sylan
 |-  ( ( W e. LVec /\ U e. S ) -> X e. LMod )
6 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
7 1 6 resssca
 |-  ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) )
8 7 adantl
 |-  ( ( W e. LVec /\ U e. S ) -> ( Scalar ` W ) = ( Scalar ` X ) )
9 6 lvecdrng
 |-  ( W e. LVec -> ( Scalar ` W ) e. DivRing )
10 9 adantr
 |-  ( ( W e. LVec /\ U e. S ) -> ( Scalar ` W ) e. DivRing )
11 8 10 eqeltrrd
 |-  ( ( W e. LVec /\ U e. S ) -> ( Scalar ` X ) e. DivRing )
12 eqid
 |-  ( Scalar ` X ) = ( Scalar ` X )
13 12 islvec
 |-  ( X e. LVec <-> ( X e. LMod /\ ( Scalar ` X ) e. DivRing ) )
14 5 11 13 sylanbrc
 |-  ( ( W e. LVec /\ U e. S ) -> X e. LVec )