| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lss0cl.z |  |-  .0. = ( 0g ` W ) | 
						
							| 2 |  | lss0cl.s |  |-  S = ( LSubSp ` W ) | 
						
							| 3 | 2 | lssn0 |  |-  ( X e. S -> X =/= (/) ) | 
						
							| 4 |  | eqsn |  |-  ( X =/= (/) -> ( X = { .0. } <-> A. y e. X y = .0. ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( X e. S -> ( X = { .0. } <-> A. y e. X y = .0. ) ) | 
						
							| 6 |  | nne |  |-  ( -. y =/= .0. <-> y = .0. ) | 
						
							| 7 | 6 | ralbii |  |-  ( A. y e. X -. y =/= .0. <-> A. y e. X y = .0. ) | 
						
							| 8 |  | ralnex |  |-  ( A. y e. X -. y =/= .0. <-> -. E. y e. X y =/= .0. ) | 
						
							| 9 | 7 8 | bitr3i |  |-  ( A. y e. X y = .0. <-> -. E. y e. X y =/= .0. ) | 
						
							| 10 | 5 9 | bitr2di |  |-  ( X e. S -> ( -. E. y e. X y =/= .0. <-> X = { .0. } ) ) | 
						
							| 11 | 10 | necon1abid |  |-  ( X e. S -> ( X =/= { .0. } <-> E. y e. X y =/= .0. ) ) |