Metamath Proof Explorer


Theorem lssneln0

Description: A vector X which doesn't belong to a subspace U is nonzero. (Contributed by NM, 14-May-2015) (Revised by AV, 17-Jul-2022) (Proof shortened by AV, 19-Jul-2022)

Ref Expression
Hypotheses lssneln0.o
|- .0. = ( 0g ` W )
lssneln0.s
|- S = ( LSubSp ` W )
lssneln0.w
|- ( ph -> W e. LMod )
lssneln0.u
|- ( ph -> U e. S )
lssneln0.x
|- ( ph -> X e. V )
lssneln0.n
|- ( ph -> -. X e. U )
Assertion lssneln0
|- ( ph -> X e. ( V \ { .0. } ) )

Proof

Step Hyp Ref Expression
1 lssneln0.o
 |-  .0. = ( 0g ` W )
2 lssneln0.s
 |-  S = ( LSubSp ` W )
3 lssneln0.w
 |-  ( ph -> W e. LMod )
4 lssneln0.u
 |-  ( ph -> U e. S )
5 lssneln0.x
 |-  ( ph -> X e. V )
6 lssneln0.n
 |-  ( ph -> -. X e. U )
7 1 2 3 4 6 lssvneln0
 |-  ( ph -> X =/= .0. )
8 eldifsn
 |-  ( X e. ( V \ { .0. } ) <-> ( X e. V /\ X =/= .0. ) )
9 5 7 8 sylanbrc
 |-  ( ph -> X e. ( V \ { .0. } ) )