Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Subspaces and spans in a left module
lssneln0
Metamath Proof Explorer
Description: A vector X which doesn't belong to a subspace U is nonzero.
(Contributed by NM , 14-May-2015) (Revised by AV , 17-Jul-2022) (Proof
shortened by AV , 19-Jul-2022)
Ref
Expression
Hypotheses
lssneln0.o
|- .0. = ( 0g ` W )
lssneln0.s
|- S = ( LSubSp ` W )
lssneln0.w
|- ( ph -> W e. LMod )
lssneln0.u
|- ( ph -> U e. S )
lssneln0.x
|- ( ph -> X e. V )
lssneln0.n
|- ( ph -> -. X e. U )
Assertion
lssneln0
|- ( ph -> X e. ( V \ { .0. } ) )
Proof
Step
Hyp
Ref
Expression
1
lssneln0.o
|- .0. = ( 0g ` W )
2
lssneln0.s
|- S = ( LSubSp ` W )
3
lssneln0.w
|- ( ph -> W e. LMod )
4
lssneln0.u
|- ( ph -> U e. S )
5
lssneln0.x
|- ( ph -> X e. V )
6
lssneln0.n
|- ( ph -> -. X e. U )
7
1 2 3 4 6
lssvneln0
|- ( ph -> X =/= .0. )
8
eldifsn
|- ( X e. ( V \ { .0. } ) <-> ( X e. V /\ X =/= .0. ) )
9
5 7 8
sylanbrc
|- ( ph -> X e. ( V \ { .0. } ) )