| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lssnlm.x |  |-  X = ( W |`s U ) | 
						
							| 2 |  | lssnlm.s |  |-  S = ( LSubSp ` W ) | 
						
							| 3 |  | nlmngp |  |-  ( W e. NrmMod -> W e. NrmGrp ) | 
						
							| 4 |  | nlmlmod |  |-  ( W e. NrmMod -> W e. LMod ) | 
						
							| 5 | 2 | lsssubg |  |-  ( ( W e. LMod /\ U e. S ) -> U e. ( SubGrp ` W ) ) | 
						
							| 6 | 4 5 | sylan |  |-  ( ( W e. NrmMod /\ U e. S ) -> U e. ( SubGrp ` W ) ) | 
						
							| 7 | 1 | subgngp |  |-  ( ( W e. NrmGrp /\ U e. ( SubGrp ` W ) ) -> X e. NrmGrp ) | 
						
							| 8 | 3 6 7 | syl2an2r |  |-  ( ( W e. NrmMod /\ U e. S ) -> X e. NrmGrp ) | 
						
							| 9 | 1 2 | lsslmod |  |-  ( ( W e. LMod /\ U e. S ) -> X e. LMod ) | 
						
							| 10 | 4 9 | sylan |  |-  ( ( W e. NrmMod /\ U e. S ) -> X e. LMod ) | 
						
							| 11 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 12 | 1 11 | resssca |  |-  ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( W e. NrmMod /\ U e. S ) -> ( Scalar ` W ) = ( Scalar ` X ) ) | 
						
							| 14 | 11 | nlmnrg |  |-  ( W e. NrmMod -> ( Scalar ` W ) e. NrmRing ) | 
						
							| 15 | 14 | adantr |  |-  ( ( W e. NrmMod /\ U e. S ) -> ( Scalar ` W ) e. NrmRing ) | 
						
							| 16 | 13 15 | eqeltrrd |  |-  ( ( W e. NrmMod /\ U e. S ) -> ( Scalar ` X ) e. NrmRing ) | 
						
							| 17 | 8 10 16 | 3jca |  |-  ( ( W e. NrmMod /\ U e. S ) -> ( X e. NrmGrp /\ X e. LMod /\ ( Scalar ` X ) e. NrmRing ) ) | 
						
							| 18 |  | simpll |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> W e. NrmMod ) | 
						
							| 19 |  | simprl |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> x e. ( Base ` ( Scalar ` X ) ) ) | 
						
							| 20 | 13 | adantr |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( Scalar ` W ) = ( Scalar ` X ) ) | 
						
							| 21 | 20 | fveq2d |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` X ) ) ) | 
						
							| 22 | 19 21 | eleqtrrd |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 23 | 6 | adantr |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> U e. ( SubGrp ` W ) ) | 
						
							| 24 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 25 | 24 | subgss |  |-  ( U e. ( SubGrp ` W ) -> U C_ ( Base ` W ) ) | 
						
							| 26 | 23 25 | syl |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> U C_ ( Base ` W ) ) | 
						
							| 27 |  | simprr |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> y e. ( Base ` X ) ) | 
						
							| 28 | 1 | subgbas |  |-  ( U e. ( SubGrp ` W ) -> U = ( Base ` X ) ) | 
						
							| 29 | 23 28 | syl |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> U = ( Base ` X ) ) | 
						
							| 30 | 27 29 | eleqtrrd |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> y e. U ) | 
						
							| 31 | 26 30 | sseldd |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> y e. ( Base ` W ) ) | 
						
							| 32 |  | eqid |  |-  ( norm ` W ) = ( norm ` W ) | 
						
							| 33 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 34 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 35 |  | eqid |  |-  ( norm ` ( Scalar ` W ) ) = ( norm ` ( Scalar ` W ) ) | 
						
							| 36 | 24 32 33 11 34 35 | nmvs |  |-  ( ( W e. NrmMod /\ x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) -> ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) = ( ( ( norm ` ( Scalar ` W ) ) ` x ) x. ( ( norm ` W ) ` y ) ) ) | 
						
							| 37 | 18 22 31 36 | syl3anc |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) = ( ( ( norm ` ( Scalar ` W ) ) ` x ) x. ( ( norm ` W ) ` y ) ) ) | 
						
							| 38 |  | simplr |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> U e. S ) | 
						
							| 39 | 1 33 | ressvsca |  |-  ( U e. S -> ( .s ` W ) = ( .s ` X ) ) | 
						
							| 40 | 38 39 | syl |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( .s ` W ) = ( .s ` X ) ) | 
						
							| 41 | 40 | oveqd |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( x ( .s ` W ) y ) = ( x ( .s ` X ) y ) ) | 
						
							| 42 | 41 | fveq2d |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` X ) ` ( x ( .s ` W ) y ) ) = ( ( norm ` X ) ` ( x ( .s ` X ) y ) ) ) | 
						
							| 43 | 4 | ad2antrr |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> W e. LMod ) | 
						
							| 44 | 11 33 34 2 | lssvscl |  |-  ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. U ) ) -> ( x ( .s ` W ) y ) e. U ) | 
						
							| 45 | 43 38 22 30 44 | syl22anc |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( x ( .s ` W ) y ) e. U ) | 
						
							| 46 |  | eqid |  |-  ( norm ` X ) = ( norm ` X ) | 
						
							| 47 | 1 32 46 | subgnm2 |  |-  ( ( U e. ( SubGrp ` W ) /\ ( x ( .s ` W ) y ) e. U ) -> ( ( norm ` X ) ` ( x ( .s ` W ) y ) ) = ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) ) | 
						
							| 48 | 6 45 47 | syl2an2r |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` X ) ` ( x ( .s ` W ) y ) ) = ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) ) | 
						
							| 49 | 42 48 | eqtr3d |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` X ) ` ( x ( .s ` X ) y ) ) = ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) ) | 
						
							| 50 | 20 | eqcomd |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( Scalar ` X ) = ( Scalar ` W ) ) | 
						
							| 51 | 50 | fveq2d |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( norm ` ( Scalar ` X ) ) = ( norm ` ( Scalar ` W ) ) ) | 
						
							| 52 | 51 | fveq1d |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` ( Scalar ` X ) ) ` x ) = ( ( norm ` ( Scalar ` W ) ) ` x ) ) | 
						
							| 53 | 1 32 46 | subgnm2 |  |-  ( ( U e. ( SubGrp ` W ) /\ y e. U ) -> ( ( norm ` X ) ` y ) = ( ( norm ` W ) ` y ) ) | 
						
							| 54 | 6 30 53 | syl2an2r |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` X ) ` y ) = ( ( norm ` W ) ` y ) ) | 
						
							| 55 | 52 54 | oveq12d |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( ( norm ` ( Scalar ` X ) ) ` x ) x. ( ( norm ` X ) ` y ) ) = ( ( ( norm ` ( Scalar ` W ) ) ` x ) x. ( ( norm ` W ) ` y ) ) ) | 
						
							| 56 | 37 49 55 | 3eqtr4d |  |-  ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` X ) ` ( x ( .s ` X ) y ) ) = ( ( ( norm ` ( Scalar ` X ) ) ` x ) x. ( ( norm ` X ) ` y ) ) ) | 
						
							| 57 | 56 | ralrimivva |  |-  ( ( W e. NrmMod /\ U e. S ) -> A. x e. ( Base ` ( Scalar ` X ) ) A. y e. ( Base ` X ) ( ( norm ` X ) ` ( x ( .s ` X ) y ) ) = ( ( ( norm ` ( Scalar ` X ) ) ` x ) x. ( ( norm ` X ) ` y ) ) ) | 
						
							| 58 |  | eqid |  |-  ( Base ` X ) = ( Base ` X ) | 
						
							| 59 |  | eqid |  |-  ( .s ` X ) = ( .s ` X ) | 
						
							| 60 |  | eqid |  |-  ( Scalar ` X ) = ( Scalar ` X ) | 
						
							| 61 |  | eqid |  |-  ( Base ` ( Scalar ` X ) ) = ( Base ` ( Scalar ` X ) ) | 
						
							| 62 |  | eqid |  |-  ( norm ` ( Scalar ` X ) ) = ( norm ` ( Scalar ` X ) ) | 
						
							| 63 | 58 46 59 60 61 62 | isnlm |  |-  ( X e. NrmMod <-> ( ( X e. NrmGrp /\ X e. LMod /\ ( Scalar ` X ) e. NrmRing ) /\ A. x e. ( Base ` ( Scalar ` X ) ) A. y e. ( Base ` X ) ( ( norm ` X ) ` ( x ( .s ` X ) y ) ) = ( ( ( norm ` ( Scalar ` X ) ) ` x ) x. ( ( norm ` X ) ` y ) ) ) ) | 
						
							| 64 | 17 57 63 | sylanbrc |  |-  ( ( W e. NrmMod /\ U e. S ) -> X e. NrmMod ) |