Step |
Hyp |
Ref |
Expression |
1 |
|
lssnlm.x |
|- X = ( W |`s U ) |
2 |
|
lssnlm.s |
|- S = ( LSubSp ` W ) |
3 |
|
nlmngp |
|- ( W e. NrmMod -> W e. NrmGrp ) |
4 |
|
nlmlmod |
|- ( W e. NrmMod -> W e. LMod ) |
5 |
2
|
lsssubg |
|- ( ( W e. LMod /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
6 |
4 5
|
sylan |
|- ( ( W e. NrmMod /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
7 |
1
|
subgngp |
|- ( ( W e. NrmGrp /\ U e. ( SubGrp ` W ) ) -> X e. NrmGrp ) |
8 |
3 6 7
|
syl2an2r |
|- ( ( W e. NrmMod /\ U e. S ) -> X e. NrmGrp ) |
9 |
1 2
|
lsslmod |
|- ( ( W e. LMod /\ U e. S ) -> X e. LMod ) |
10 |
4 9
|
sylan |
|- ( ( W e. NrmMod /\ U e. S ) -> X e. LMod ) |
11 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
12 |
1 11
|
resssca |
|- ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) |
13 |
12
|
adantl |
|- ( ( W e. NrmMod /\ U e. S ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
14 |
11
|
nlmnrg |
|- ( W e. NrmMod -> ( Scalar ` W ) e. NrmRing ) |
15 |
14
|
adantr |
|- ( ( W e. NrmMod /\ U e. S ) -> ( Scalar ` W ) e. NrmRing ) |
16 |
13 15
|
eqeltrrd |
|- ( ( W e. NrmMod /\ U e. S ) -> ( Scalar ` X ) e. NrmRing ) |
17 |
8 10 16
|
3jca |
|- ( ( W e. NrmMod /\ U e. S ) -> ( X e. NrmGrp /\ X e. LMod /\ ( Scalar ` X ) e. NrmRing ) ) |
18 |
|
simpll |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> W e. NrmMod ) |
19 |
|
simprl |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> x e. ( Base ` ( Scalar ` X ) ) ) |
20 |
13
|
adantr |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
21 |
20
|
fveq2d |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` X ) ) ) |
22 |
19 21
|
eleqtrrd |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) |
23 |
6
|
adantr |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> U e. ( SubGrp ` W ) ) |
24 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
25 |
24
|
subgss |
|- ( U e. ( SubGrp ` W ) -> U C_ ( Base ` W ) ) |
26 |
23 25
|
syl |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> U C_ ( Base ` W ) ) |
27 |
|
simprr |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> y e. ( Base ` X ) ) |
28 |
1
|
subgbas |
|- ( U e. ( SubGrp ` W ) -> U = ( Base ` X ) ) |
29 |
23 28
|
syl |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> U = ( Base ` X ) ) |
30 |
27 29
|
eleqtrrd |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> y e. U ) |
31 |
26 30
|
sseldd |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> y e. ( Base ` W ) ) |
32 |
|
eqid |
|- ( norm ` W ) = ( norm ` W ) |
33 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
34 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
35 |
|
eqid |
|- ( norm ` ( Scalar ` W ) ) = ( norm ` ( Scalar ` W ) ) |
36 |
24 32 33 11 34 35
|
nmvs |
|- ( ( W e. NrmMod /\ x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) -> ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) = ( ( ( norm ` ( Scalar ` W ) ) ` x ) x. ( ( norm ` W ) ` y ) ) ) |
37 |
18 22 31 36
|
syl3anc |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) = ( ( ( norm ` ( Scalar ` W ) ) ` x ) x. ( ( norm ` W ) ` y ) ) ) |
38 |
|
simplr |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> U e. S ) |
39 |
1 33
|
ressvsca |
|- ( U e. S -> ( .s ` W ) = ( .s ` X ) ) |
40 |
38 39
|
syl |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( .s ` W ) = ( .s ` X ) ) |
41 |
40
|
oveqd |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( x ( .s ` W ) y ) = ( x ( .s ` X ) y ) ) |
42 |
41
|
fveq2d |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` X ) ` ( x ( .s ` W ) y ) ) = ( ( norm ` X ) ` ( x ( .s ` X ) y ) ) ) |
43 |
4
|
ad2antrr |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> W e. LMod ) |
44 |
11 33 34 2
|
lssvscl |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. U ) ) -> ( x ( .s ` W ) y ) e. U ) |
45 |
43 38 22 30 44
|
syl22anc |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( x ( .s ` W ) y ) e. U ) |
46 |
|
eqid |
|- ( norm ` X ) = ( norm ` X ) |
47 |
1 32 46
|
subgnm2 |
|- ( ( U e. ( SubGrp ` W ) /\ ( x ( .s ` W ) y ) e. U ) -> ( ( norm ` X ) ` ( x ( .s ` W ) y ) ) = ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) ) |
48 |
6 45 47
|
syl2an2r |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` X ) ` ( x ( .s ` W ) y ) ) = ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) ) |
49 |
42 48
|
eqtr3d |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` X ) ` ( x ( .s ` X ) y ) ) = ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) ) |
50 |
20
|
eqcomd |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( Scalar ` X ) = ( Scalar ` W ) ) |
51 |
50
|
fveq2d |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( norm ` ( Scalar ` X ) ) = ( norm ` ( Scalar ` W ) ) ) |
52 |
51
|
fveq1d |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` ( Scalar ` X ) ) ` x ) = ( ( norm ` ( Scalar ` W ) ) ` x ) ) |
53 |
1 32 46
|
subgnm2 |
|- ( ( U e. ( SubGrp ` W ) /\ y e. U ) -> ( ( norm ` X ) ` y ) = ( ( norm ` W ) ` y ) ) |
54 |
6 30 53
|
syl2an2r |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` X ) ` y ) = ( ( norm ` W ) ` y ) ) |
55 |
52 54
|
oveq12d |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( ( norm ` ( Scalar ` X ) ) ` x ) x. ( ( norm ` X ) ` y ) ) = ( ( ( norm ` ( Scalar ` W ) ) ` x ) x. ( ( norm ` W ) ` y ) ) ) |
56 |
37 49 55
|
3eqtr4d |
|- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` X ) ` ( x ( .s ` X ) y ) ) = ( ( ( norm ` ( Scalar ` X ) ) ` x ) x. ( ( norm ` X ) ` y ) ) ) |
57 |
56
|
ralrimivva |
|- ( ( W e. NrmMod /\ U e. S ) -> A. x e. ( Base ` ( Scalar ` X ) ) A. y e. ( Base ` X ) ( ( norm ` X ) ` ( x ( .s ` X ) y ) ) = ( ( ( norm ` ( Scalar ` X ) ) ` x ) x. ( ( norm ` X ) ` y ) ) ) |
58 |
|
eqid |
|- ( Base ` X ) = ( Base ` X ) |
59 |
|
eqid |
|- ( .s ` X ) = ( .s ` X ) |
60 |
|
eqid |
|- ( Scalar ` X ) = ( Scalar ` X ) |
61 |
|
eqid |
|- ( Base ` ( Scalar ` X ) ) = ( Base ` ( Scalar ` X ) ) |
62 |
|
eqid |
|- ( norm ` ( Scalar ` X ) ) = ( norm ` ( Scalar ` X ) ) |
63 |
58 46 59 60 61 62
|
isnlm |
|- ( X e. NrmMod <-> ( ( X e. NrmGrp /\ X e. LMod /\ ( Scalar ` X ) e. NrmRing ) /\ A. x e. ( Base ` ( Scalar ` X ) ) A. y e. ( Base ` X ) ( ( norm ` X ) ` ( x ( .s ` X ) y ) ) = ( ( ( norm ` ( Scalar ` X ) ) ` x ) x. ( ( norm ` X ) ` y ) ) ) ) |
64 |
17 57 63
|
sylanbrc |
|- ( ( W e. NrmMod /\ U e. S ) -> X e. NrmMod ) |