| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lssnlm.x |  |-  X = ( W |`s U ) | 
						
							| 2 |  | lssnlm.s |  |-  S = ( LSubSp ` W ) | 
						
							| 3 |  | nvcnlm |  |-  ( W e. NrmVec -> W e. NrmMod ) | 
						
							| 4 | 1 2 | lssnlm |  |-  ( ( W e. NrmMod /\ U e. S ) -> X e. NrmMod ) | 
						
							| 5 | 3 4 | sylan |  |-  ( ( W e. NrmVec /\ U e. S ) -> X e. NrmMod ) | 
						
							| 6 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 7 | 1 6 | resssca |  |-  ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( W e. NrmVec /\ U e. S ) -> ( Scalar ` W ) = ( Scalar ` X ) ) | 
						
							| 9 |  | nvclvec |  |-  ( W e. NrmVec -> W e. LVec ) | 
						
							| 10 | 6 | lvecdrng |  |-  ( W e. LVec -> ( Scalar ` W ) e. DivRing ) | 
						
							| 11 | 9 10 | syl |  |-  ( W e. NrmVec -> ( Scalar ` W ) e. DivRing ) | 
						
							| 12 | 11 | adantr |  |-  ( ( W e. NrmVec /\ U e. S ) -> ( Scalar ` W ) e. DivRing ) | 
						
							| 13 | 8 12 | eqeltrrd |  |-  ( ( W e. NrmVec /\ U e. S ) -> ( Scalar ` X ) e. DivRing ) | 
						
							| 14 |  | eqid |  |-  ( Scalar ` X ) = ( Scalar ` X ) | 
						
							| 15 | 14 | isnvc2 |  |-  ( X e. NrmVec <-> ( X e. NrmMod /\ ( Scalar ` X ) e. DivRing ) ) | 
						
							| 16 | 5 13 15 | sylanbrc |  |-  ( ( W e. NrmVec /\ U e. S ) -> X e. NrmVec ) |