Step |
Hyp |
Ref |
Expression |
1 |
|
lssnlm.x |
|- X = ( W |`s U ) |
2 |
|
lssnlm.s |
|- S = ( LSubSp ` W ) |
3 |
|
nvcnlm |
|- ( W e. NrmVec -> W e. NrmMod ) |
4 |
1 2
|
lssnlm |
|- ( ( W e. NrmMod /\ U e. S ) -> X e. NrmMod ) |
5 |
3 4
|
sylan |
|- ( ( W e. NrmVec /\ U e. S ) -> X e. NrmMod ) |
6 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
7 |
1 6
|
resssca |
|- ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) |
8 |
7
|
adantl |
|- ( ( W e. NrmVec /\ U e. S ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
9 |
|
nvclvec |
|- ( W e. NrmVec -> W e. LVec ) |
10 |
6
|
lvecdrng |
|- ( W e. LVec -> ( Scalar ` W ) e. DivRing ) |
11 |
9 10
|
syl |
|- ( W e. NrmVec -> ( Scalar ` W ) e. DivRing ) |
12 |
11
|
adantr |
|- ( ( W e. NrmVec /\ U e. S ) -> ( Scalar ` W ) e. DivRing ) |
13 |
8 12
|
eqeltrrd |
|- ( ( W e. NrmVec /\ U e. S ) -> ( Scalar ` X ) e. DivRing ) |
14 |
|
eqid |
|- ( Scalar ` X ) = ( Scalar ` X ) |
15 |
14
|
isnvc2 |
|- ( X e. NrmVec <-> ( X e. NrmMod /\ ( Scalar ` X ) e. DivRing ) ) |
16 |
5 13 15
|
sylanbrc |
|- ( ( W e. NrmVec /\ U e. S ) -> X e. NrmVec ) |