Step |
Hyp |
Ref |
Expression |
1 |
|
lssset.f |
|- F = ( Scalar ` W ) |
2 |
|
lssset.b |
|- B = ( Base ` F ) |
3 |
|
lssset.v |
|- V = ( Base ` W ) |
4 |
|
lssset.p |
|- .+ = ( +g ` W ) |
5 |
|
lssset.t |
|- .x. = ( .s ` W ) |
6 |
|
lssset.s |
|- S = ( LSubSp ` W ) |
7 |
|
elex |
|- ( W e. X -> W e. _V ) |
8 |
|
fveq2 |
|- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
9 |
8 3
|
eqtr4di |
|- ( w = W -> ( Base ` w ) = V ) |
10 |
9
|
pweqd |
|- ( w = W -> ~P ( Base ` w ) = ~P V ) |
11 |
10
|
difeq1d |
|- ( w = W -> ( ~P ( Base ` w ) \ { (/) } ) = ( ~P V \ { (/) } ) ) |
12 |
|
fveq2 |
|- ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) |
13 |
12 1
|
eqtr4di |
|- ( w = W -> ( Scalar ` w ) = F ) |
14 |
13
|
fveq2d |
|- ( w = W -> ( Base ` ( Scalar ` w ) ) = ( Base ` F ) ) |
15 |
14 2
|
eqtr4di |
|- ( w = W -> ( Base ` ( Scalar ` w ) ) = B ) |
16 |
|
fveq2 |
|- ( w = W -> ( .s ` w ) = ( .s ` W ) ) |
17 |
16 5
|
eqtr4di |
|- ( w = W -> ( .s ` w ) = .x. ) |
18 |
17
|
oveqd |
|- ( w = W -> ( x ( .s ` w ) a ) = ( x .x. a ) ) |
19 |
18
|
oveq1d |
|- ( w = W -> ( ( x ( .s ` w ) a ) ( +g ` w ) b ) = ( ( x .x. a ) ( +g ` w ) b ) ) |
20 |
|
fveq2 |
|- ( w = W -> ( +g ` w ) = ( +g ` W ) ) |
21 |
20 4
|
eqtr4di |
|- ( w = W -> ( +g ` w ) = .+ ) |
22 |
21
|
oveqd |
|- ( w = W -> ( ( x .x. a ) ( +g ` w ) b ) = ( ( x .x. a ) .+ b ) ) |
23 |
19 22
|
eqtrd |
|- ( w = W -> ( ( x ( .s ` w ) a ) ( +g ` w ) b ) = ( ( x .x. a ) .+ b ) ) |
24 |
23
|
eleq1d |
|- ( w = W -> ( ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s <-> ( ( x .x. a ) .+ b ) e. s ) ) |
25 |
24
|
2ralbidv |
|- ( w = W -> ( A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s <-> A. a e. s A. b e. s ( ( x .x. a ) .+ b ) e. s ) ) |
26 |
15 25
|
raleqbidv |
|- ( w = W -> ( A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s <-> A. x e. B A. a e. s A. b e. s ( ( x .x. a ) .+ b ) e. s ) ) |
27 |
11 26
|
rabeqbidv |
|- ( w = W -> { s e. ( ~P ( Base ` w ) \ { (/) } ) | A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s } = { s e. ( ~P V \ { (/) } ) | A. x e. B A. a e. s A. b e. s ( ( x .x. a ) .+ b ) e. s } ) |
28 |
|
df-lss |
|- LSubSp = ( w e. _V |-> { s e. ( ~P ( Base ` w ) \ { (/) } ) | A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s } ) |
29 |
3
|
fvexi |
|- V e. _V |
30 |
29
|
pwex |
|- ~P V e. _V |
31 |
30
|
difexi |
|- ( ~P V \ { (/) } ) e. _V |
32 |
31
|
rabex |
|- { s e. ( ~P V \ { (/) } ) | A. x e. B A. a e. s A. b e. s ( ( x .x. a ) .+ b ) e. s } e. _V |
33 |
27 28 32
|
fvmpt |
|- ( W e. _V -> ( LSubSp ` W ) = { s e. ( ~P V \ { (/) } ) | A. x e. B A. a e. s A. b e. s ( ( x .x. a ) .+ b ) e. s } ) |
34 |
7 33
|
syl |
|- ( W e. X -> ( LSubSp ` W ) = { s e. ( ~P V \ { (/) } ) | A. x e. B A. a e. s A. b e. s ( ( x .x. a ) .+ b ) e. s } ) |
35 |
6 34
|
eqtrid |
|- ( W e. X -> S = { s e. ( ~P V \ { (/) } ) | A. x e. B A. a e. s A. b e. s ( ( x .x. a ) .+ b ) e. s } ) |