| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lss0cl.z |  |-  .0. = ( 0g ` W ) | 
						
							| 2 |  | lss0cl.s |  |-  S = ( LSubSp ` W ) | 
						
							| 3 |  | eqidd |  |-  ( W e. LMod -> ( Scalar ` W ) = ( Scalar ` W ) ) | 
						
							| 4 |  | eqidd |  |-  ( W e. LMod -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) ) | 
						
							| 5 |  | eqidd |  |-  ( W e. LMod -> ( Base ` W ) = ( Base ` W ) ) | 
						
							| 6 |  | eqidd |  |-  ( W e. LMod -> ( +g ` W ) = ( +g ` W ) ) | 
						
							| 7 |  | eqidd |  |-  ( W e. LMod -> ( .s ` W ) = ( .s ` W ) ) | 
						
							| 8 | 2 | a1i |  |-  ( W e. LMod -> S = ( LSubSp ` W ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 10 | 9 1 | lmod0vcl |  |-  ( W e. LMod -> .0. e. ( Base ` W ) ) | 
						
							| 11 | 10 | snssd |  |-  ( W e. LMod -> { .0. } C_ ( Base ` W ) ) | 
						
							| 12 | 1 | fvexi |  |-  .0. e. _V | 
						
							| 13 | 12 | snnz |  |-  { .0. } =/= (/) | 
						
							| 14 | 13 | a1i |  |-  ( W e. LMod -> { .0. } =/= (/) ) | 
						
							| 15 |  | simpr2 |  |-  ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> a e. { .0. } ) | 
						
							| 16 |  | elsni |  |-  ( a e. { .0. } -> a = .0. ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> a = .0. ) | 
						
							| 18 | 17 | oveq2d |  |-  ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( x ( .s ` W ) a ) = ( x ( .s ` W ) .0. ) ) | 
						
							| 19 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 20 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 21 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 22 | 19 20 21 1 | lmodvs0 |  |-  ( ( W e. LMod /\ x e. ( Base ` ( Scalar ` W ) ) ) -> ( x ( .s ` W ) .0. ) = .0. ) | 
						
							| 23 | 22 | 3ad2antr1 |  |-  ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( x ( .s ` W ) .0. ) = .0. ) | 
						
							| 24 | 18 23 | eqtrd |  |-  ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( x ( .s ` W ) a ) = .0. ) | 
						
							| 25 |  | simpr3 |  |-  ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> b e. { .0. } ) | 
						
							| 26 |  | elsni |  |-  ( b e. { .0. } -> b = .0. ) | 
						
							| 27 | 25 26 | syl |  |-  ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> b = .0. ) | 
						
							| 28 | 24 27 | oveq12d |  |-  ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) = ( .0. ( +g ` W ) .0. ) ) | 
						
							| 29 |  | eqid |  |-  ( +g ` W ) = ( +g ` W ) | 
						
							| 30 | 9 29 1 | lmod0vlid |  |-  ( ( W e. LMod /\ .0. e. ( Base ` W ) ) -> ( .0. ( +g ` W ) .0. ) = .0. ) | 
						
							| 31 | 10 30 | mpdan |  |-  ( W e. LMod -> ( .0. ( +g ` W ) .0. ) = .0. ) | 
						
							| 32 | 31 | adantr |  |-  ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( .0. ( +g ` W ) .0. ) = .0. ) | 
						
							| 33 | 28 32 | eqtrd |  |-  ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) = .0. ) | 
						
							| 34 |  | ovex |  |-  ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. _V | 
						
							| 35 | 34 | elsn |  |-  ( ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. { .0. } <-> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) = .0. ) | 
						
							| 36 | 33 35 | sylibr |  |-  ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. { .0. } ) | 
						
							| 37 | 3 4 5 6 7 8 11 14 36 | islssd |  |-  ( W e. LMod -> { .0. } e. S ) |