Step |
Hyp |
Ref |
Expression |
1 |
|
lsssra.w |
|- W = ( ( subringAlg ` R ) ` C ) |
2 |
|
lsssra.a |
|- A = ( Base ` R ) |
3 |
|
lsssra.s |
|- S = ( R |`s B ) |
4 |
|
lsssra.b |
|- ( ph -> B e. ( SubRing ` R ) ) |
5 |
|
lsssra.c |
|- ( ph -> C e. ( SubRing ` S ) ) |
6 |
3
|
subsubrg |
|- ( B e. ( SubRing ` R ) -> ( C e. ( SubRing ` S ) <-> ( C e. ( SubRing ` R ) /\ C C_ B ) ) ) |
7 |
6
|
biimpa |
|- ( ( B e. ( SubRing ` R ) /\ C e. ( SubRing ` S ) ) -> ( C e. ( SubRing ` R ) /\ C C_ B ) ) |
8 |
4 5 7
|
syl2anc |
|- ( ph -> ( C e. ( SubRing ` R ) /\ C C_ B ) ) |
9 |
8
|
simpld |
|- ( ph -> C e. ( SubRing ` R ) ) |
10 |
1
|
sralmod |
|- ( C e. ( SubRing ` R ) -> W e. LMod ) |
11 |
9 10
|
syl |
|- ( ph -> W e. LMod ) |
12 |
2
|
subrgss |
|- ( B e. ( SubRing ` R ) -> B C_ A ) |
13 |
4 12
|
syl |
|- ( ph -> B C_ A ) |
14 |
1
|
a1i |
|- ( ph -> W = ( ( subringAlg ` R ) ` C ) ) |
15 |
8
|
simprd |
|- ( ph -> C C_ B ) |
16 |
15 13
|
sstrd |
|- ( ph -> C C_ A ) |
17 |
16 2
|
sseqtrdi |
|- ( ph -> C C_ ( Base ` R ) ) |
18 |
14 17
|
srabase |
|- ( ph -> ( Base ` R ) = ( Base ` W ) ) |
19 |
2 18
|
eqtrid |
|- ( ph -> A = ( Base ` W ) ) |
20 |
13 19
|
sseqtrd |
|- ( ph -> B C_ ( Base ` W ) ) |
21 |
4
|
elfvexd |
|- ( ph -> R e. _V ) |
22 |
2 3 13 15 21
|
resssra |
|- ( ph -> ( ( subringAlg ` S ) ` C ) = ( ( ( subringAlg ` R ) ` C ) |`s B ) ) |
23 |
1
|
oveq1i |
|- ( W |`s B ) = ( ( ( subringAlg ` R ) ` C ) |`s B ) |
24 |
22 23
|
eqtr4di |
|- ( ph -> ( ( subringAlg ` S ) ` C ) = ( W |`s B ) ) |
25 |
|
eqid |
|- ( ( subringAlg ` S ) ` C ) = ( ( subringAlg ` S ) ` C ) |
26 |
25
|
sralmod |
|- ( C e. ( SubRing ` S ) -> ( ( subringAlg ` S ) ` C ) e. LMod ) |
27 |
5 26
|
syl |
|- ( ph -> ( ( subringAlg ` S ) ` C ) e. LMod ) |
28 |
24 27
|
eqeltrrd |
|- ( ph -> ( W |`s B ) e. LMod ) |
29 |
|
eqid |
|- ( W |`s B ) = ( W |`s B ) |
30 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
31 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
32 |
29 30 31
|
islss3 |
|- ( W e. LMod -> ( B e. ( LSubSp ` W ) <-> ( B C_ ( Base ` W ) /\ ( W |`s B ) e. LMod ) ) ) |
33 |
32
|
biimpar |
|- ( ( W e. LMod /\ ( B C_ ( Base ` W ) /\ ( W |`s B ) e. LMod ) ) -> B e. ( LSubSp ` W ) ) |
34 |
11 20 28 33
|
syl12anc |
|- ( ph -> B e. ( LSubSp ` W ) ) |