Metamath Proof Explorer


Theorem lssss

Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypotheses lssss.v
|- V = ( Base ` W )
lssss.s
|- S = ( LSubSp ` W )
Assertion lssss
|- ( U e. S -> U C_ V )

Proof

Step Hyp Ref Expression
1 lssss.v
 |-  V = ( Base ` W )
2 lssss.s
 |-  S = ( LSubSp ` W )
3 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
4 eqid
 |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) )
5 eqid
 |-  ( +g ` W ) = ( +g ` W )
6 eqid
 |-  ( .s ` W ) = ( .s ` W )
7 3 4 1 5 6 2 islss
 |-  ( U e. S <-> ( U C_ V /\ U =/= (/) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. a e. U A. b e. U ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. U ) )
8 7 simp1bi
 |-  ( U e. S -> U C_ V )