Description: All subspaces are subgroups. (Contributed by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsssubg.s | |- S = ( LSubSp ` W ) |
|
| Assertion | lsssssubg | |- ( W e. LMod -> S C_ ( SubGrp ` W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsssubg.s | |- S = ( LSubSp ` W ) |
|
| 2 | 1 | lsssubg | |- ( ( W e. LMod /\ x e. S ) -> x e. ( SubGrp ` W ) ) |
| 3 | 2 | ex | |- ( W e. LMod -> ( x e. S -> x e. ( SubGrp ` W ) ) ) |
| 4 | 3 | ssrdv | |- ( W e. LMod -> S C_ ( SubGrp ` W ) ) |