Description: All subspaces are subgroups. (Contributed by Mario Carneiro, 19-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lsssubg.s | |- S = ( LSubSp ` W ) |
|
Assertion | lsssssubg | |- ( W e. LMod -> S C_ ( SubGrp ` W ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsssubg.s | |- S = ( LSubSp ` W ) |
|
2 | 1 | lsssubg | |- ( ( W e. LMod /\ x e. S ) -> x e. ( SubGrp ` W ) ) |
3 | 2 | ex | |- ( W e. LMod -> ( x e. S -> x e. ( SubGrp ` W ) ) ) |
4 | 3 | ssrdv | |- ( W e. LMod -> S C_ ( SubGrp ` W ) ) |