Description: The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssss.v | |- V = ( Base ` W ) |
|
| lssss.s | |- S = ( LSubSp ` W ) |
||
| lssuni.w | |- ( ph -> W e. LMod ) |
||
| Assertion | lssuni | |- ( ph -> U. S = V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssss.v | |- V = ( Base ` W ) |
|
| 2 | lssss.s | |- S = ( LSubSp ` W ) |
|
| 3 | lssuni.w | |- ( ph -> W e. LMod ) |
|
| 4 | rabid2 | |- ( S = { x e. S | x C_ V } <-> A. x e. S x C_ V ) |
|
| 5 | 1 2 | lssss | |- ( x e. S -> x C_ V ) |
| 6 | 4 5 | mprgbir | |- S = { x e. S | x C_ V } |
| 7 | 6 | unieqi | |- U. S = U. { x e. S | x C_ V } |
| 8 | 1 2 | lss1 | |- ( W e. LMod -> V e. S ) |
| 9 | unimax | |- ( V e. S -> U. { x e. S | x C_ V } = V ) |
|
| 10 | 3 8 9 | 3syl | |- ( ph -> U. { x e. S | x C_ V } = V ) |
| 11 | 7 10 | eqtrid | |- ( ph -> U. S = V ) |