Metamath Proof Explorer


Theorem lssuni

Description: The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses lssss.v
|- V = ( Base ` W )
lssss.s
|- S = ( LSubSp ` W )
lssuni.w
|- ( ph -> W e. LMod )
Assertion lssuni
|- ( ph -> U. S = V )

Proof

Step Hyp Ref Expression
1 lssss.v
 |-  V = ( Base ` W )
2 lssss.s
 |-  S = ( LSubSp ` W )
3 lssuni.w
 |-  ( ph -> W e. LMod )
4 rabid2
 |-  ( S = { x e. S | x C_ V } <-> A. x e. S x C_ V )
5 1 2 lssss
 |-  ( x e. S -> x C_ V )
6 4 5 mprgbir
 |-  S = { x e. S | x C_ V }
7 6 unieqi
 |-  U. S = U. { x e. S | x C_ V }
8 1 2 lss1
 |-  ( W e. LMod -> V e. S )
9 unimax
 |-  ( V e. S -> U. { x e. S | x C_ V } = V )
10 3 8 9 3syl
 |-  ( ph -> U. { x e. S | x C_ V } = V )
11 7 10 syl5eq
 |-  ( ph -> U. S = V )