Metamath Proof Explorer


Theorem lssvancl2

Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 20-May-2015)

Ref Expression
Hypotheses lssvancl.v
|- V = ( Base ` W )
lssvancl.p
|- .+ = ( +g ` W )
lssvancl.s
|- S = ( LSubSp ` W )
lssvancl.w
|- ( ph -> W e. LMod )
lssvancl.u
|- ( ph -> U e. S )
lssvancl.x
|- ( ph -> X e. U )
lssvancl.y
|- ( ph -> Y e. V )
lssvancl.n
|- ( ph -> -. Y e. U )
Assertion lssvancl2
|- ( ph -> -. ( Y .+ X ) e. U )

Proof

Step Hyp Ref Expression
1 lssvancl.v
 |-  V = ( Base ` W )
2 lssvancl.p
 |-  .+ = ( +g ` W )
3 lssvancl.s
 |-  S = ( LSubSp ` W )
4 lssvancl.w
 |-  ( ph -> W e. LMod )
5 lssvancl.u
 |-  ( ph -> U e. S )
6 lssvancl.x
 |-  ( ph -> X e. U )
7 lssvancl.y
 |-  ( ph -> Y e. V )
8 lssvancl.n
 |-  ( ph -> -. Y e. U )
9 1 3 lssel
 |-  ( ( U e. S /\ X e. U ) -> X e. V )
10 5 6 9 syl2anc
 |-  ( ph -> X e. V )
11 1 2 lmodcom
 |-  ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X .+ Y ) = ( Y .+ X ) )
12 4 10 7 11 syl3anc
 |-  ( ph -> ( X .+ Y ) = ( Y .+ X ) )
13 1 2 3 4 5 6 7 8 lssvancl1
 |-  ( ph -> -. ( X .+ Y ) e. U )
14 12 13 eqneltrrd
 |-  ( ph -> -. ( Y .+ X ) e. U )