Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 20-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lssvancl.v | |- V = ( Base ` W ) |
|
lssvancl.p | |- .+ = ( +g ` W ) |
||
lssvancl.s | |- S = ( LSubSp ` W ) |
||
lssvancl.w | |- ( ph -> W e. LMod ) |
||
lssvancl.u | |- ( ph -> U e. S ) |
||
lssvancl.x | |- ( ph -> X e. U ) |
||
lssvancl.y | |- ( ph -> Y e. V ) |
||
lssvancl.n | |- ( ph -> -. Y e. U ) |
||
Assertion | lssvancl2 | |- ( ph -> -. ( Y .+ X ) e. U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssvancl.v | |- V = ( Base ` W ) |
|
2 | lssvancl.p | |- .+ = ( +g ` W ) |
|
3 | lssvancl.s | |- S = ( LSubSp ` W ) |
|
4 | lssvancl.w | |- ( ph -> W e. LMod ) |
|
5 | lssvancl.u | |- ( ph -> U e. S ) |
|
6 | lssvancl.x | |- ( ph -> X e. U ) |
|
7 | lssvancl.y | |- ( ph -> Y e. V ) |
|
8 | lssvancl.n | |- ( ph -> -. Y e. U ) |
|
9 | 1 3 | lssel | |- ( ( U e. S /\ X e. U ) -> X e. V ) |
10 | 5 6 9 | syl2anc | |- ( ph -> X e. V ) |
11 | 1 2 | lmodcom | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X .+ Y ) = ( Y .+ X ) ) |
12 | 4 10 7 11 | syl3anc | |- ( ph -> ( X .+ Y ) = ( Y .+ X ) ) |
13 | 1 2 3 4 5 6 7 8 | lssvancl1 | |- ( ph -> -. ( X .+ Y ) e. U ) |
14 | 12 13 | eqneltrrd | |- ( ph -> -. ( Y .+ X ) e. U ) |