Step |
Hyp |
Ref |
Expression |
1 |
|
lssvnegcl.s |
|- S = ( LSubSp ` W ) |
2 |
|
lssvnegcl.n |
|- N = ( invg ` W ) |
3 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
4 |
3 1
|
lssel |
|- ( ( U e. S /\ X e. U ) -> X e. ( Base ` W ) ) |
5 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
6 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
7 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
8 |
|
eqid |
|- ( invg ` ( Scalar ` W ) ) = ( invg ` ( Scalar ` W ) ) |
9 |
3 2 5 6 7 8
|
lmodvneg1 |
|- ( ( W e. LMod /\ X e. ( Base ` W ) ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) = ( N ` X ) ) |
10 |
4 9
|
sylan2 |
|- ( ( W e. LMod /\ ( U e. S /\ X e. U ) ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) = ( N ` X ) ) |
11 |
10
|
3impb |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) = ( N ` X ) ) |
12 |
|
simp1 |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> W e. LMod ) |
13 |
|
simp2 |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> U e. S ) |
14 |
5
|
lmodring |
|- ( W e. LMod -> ( Scalar ` W ) e. Ring ) |
15 |
14
|
3ad2ant1 |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( Scalar ` W ) e. Ring ) |
16 |
|
ringgrp |
|- ( ( Scalar ` W ) e. Ring -> ( Scalar ` W ) e. Grp ) |
17 |
15 16
|
syl |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( Scalar ` W ) e. Grp ) |
18 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
19 |
18 7
|
ringidcl |
|- ( ( Scalar ` W ) e. Ring -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
20 |
15 19
|
syl |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
21 |
18 8
|
grpinvcl |
|- ( ( ( Scalar ` W ) e. Grp /\ ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) ) |
22 |
17 20 21
|
syl2anc |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) ) |
23 |
|
simp3 |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> X e. U ) |
24 |
5 6 18 1
|
lssvscl |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) /\ X e. U ) ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) e. U ) |
25 |
12 13 22 23 24
|
syl22anc |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) e. U ) |
26 |
11 25
|
eqeltrrd |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( N ` X ) e. U ) |