| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssvnegcl.s |
|- S = ( LSubSp ` W ) |
| 2 |
|
lssvnegcl.n |
|- N = ( invg ` W ) |
| 3 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 4 |
3 1
|
lssel |
|- ( ( U e. S /\ X e. U ) -> X e. ( Base ` W ) ) |
| 5 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 6 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 7 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
| 8 |
|
eqid |
|- ( invg ` ( Scalar ` W ) ) = ( invg ` ( Scalar ` W ) ) |
| 9 |
3 2 5 6 7 8
|
lmodvneg1 |
|- ( ( W e. LMod /\ X e. ( Base ` W ) ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) = ( N ` X ) ) |
| 10 |
4 9
|
sylan2 |
|- ( ( W e. LMod /\ ( U e. S /\ X e. U ) ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) = ( N ` X ) ) |
| 11 |
10
|
3impb |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) = ( N ` X ) ) |
| 12 |
|
simp1 |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> W e. LMod ) |
| 13 |
|
simp2 |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> U e. S ) |
| 14 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 15 |
5
|
lmodring |
|- ( W e. LMod -> ( Scalar ` W ) e. Ring ) |
| 16 |
15
|
3ad2ant1 |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( Scalar ` W ) e. Ring ) |
| 17 |
16
|
ringgrpd |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( Scalar ` W ) e. Grp ) |
| 18 |
14 7
|
ringidcl |
|- ( ( Scalar ` W ) e. Ring -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 19 |
16 18
|
syl |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 20 |
14 8 17 19
|
grpinvcld |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 21 |
|
simp3 |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> X e. U ) |
| 22 |
5 6 14 1
|
lssvscl |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) /\ X e. U ) ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) e. U ) |
| 23 |
12 13 20 21 22
|
syl22anc |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) e. U ) |
| 24 |
11 23
|
eqeltrrd |
|- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( N ` X ) e. U ) |